Cho (P): y= x^2 + 1 và (d): y= 2x+3
a/ Vẽ (P) và (d)
b/ Tìm tọa độ giao điểm A, B của (P) và (d)
c/ Gọi C,D lần lượt là hình chiếu vuông góc của A, B lên Ox. Tính diện tích tứ giác ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bác học lớp 9 phải ko bài này khá đơn giản mình thấy ai cũng làm đc chỉ cần độg não thui chứ bác hỏi thế rùi vô phòng thi thì sao lớp 9 phải tự học thui
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x^2=2x+3\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{3;-1\right\}\\y\in\left\{9;1\right\}\end{matrix}\right.\)
b: A(3;9) B(-1;1)
\(OA=\sqrt{3^2+9^2}=3\sqrt{10}\)
\(OB=\sqrt{\left(-1\right)^2+1^2}=\sqrt{2}\)
\(AB=\sqrt{\left(-4\right)^2+\left(-8\right)^2}=4\sqrt{5}\)
\(\Leftrightarrow P=\dfrac{3\sqrt{10}+\sqrt{2}+4\sqrt{5}}{2}\)
\(S=\sqrt{\dfrac{3\sqrt{10}-\sqrt{2}+4\sqrt{5}}{2}\cdot\dfrac{3\sqrt{10}+\sqrt{2}+4\sqrt{5}}{2}\cdot\dfrac{-3\sqrt{10}+\sqrt{2}+4\sqrt{5}}{2}\cdot\dfrac{3\sqrt{10}+\sqrt{2}-4\sqrt{5}}{2}}\)
\(=\sqrt{\dfrac{576}{16}}=\dfrac{24}{4}=6\)
a:
b: Phương trình hoành độ giao điểm là:
\(2x+7=-\dfrac{1}{2}x+2\)
=>\(2x+\dfrac{1}{2}x=2-7=-5\)
=>2,5x=-5
=>x=-2
Thay x=-2 vào y=2x+7, ta được:
\(y=2\cdot\left(-2\right)+7=7-4=3\)
Vậy: A(-2;3)
c: Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\2x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x=-3,5\end{matrix}\right.\)
Tọa độ C là:
\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=4\end{matrix}\right.\)
Vậy: C(4;0)
A(-2;3); B(-3,5;0); C(4;0)
\(AB=\sqrt{\left(-3,5+2\right)^2+\left(0-3\right)^2}=\dfrac{3\sqrt{5}}{2}\)
\(AC=\sqrt{\left(4+2\right)^2+\left(0-3\right)^2}=3\sqrt{5}\)
\(BC=\sqrt{\left(4+3,5\right)^2+\left(0-0\right)^2}=7,5\)
Vì \(AB^2+AC^2=BC^2\)
nên ΔABC vuông tại A
=>\(\widehat{BAC}=90^0\)
Xét ΔABC vuông tại A có \(sinABC=\dfrac{AC}{BC}=\dfrac{3\sqrt{5}}{7,5}\)
=>\(\widehat{ABC}\simeq63^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=90^0-63^0=27^0\)
d: Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=\dfrac{3\sqrt{5}}{2}+3\sqrt{5}+7,5=\dfrac{9\sqrt{5}+15}{2}\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot\dfrac{3\sqrt{5}}{2}\cdot3\sqrt{5}=\dfrac{45}{4}\)
PTHĐGĐ là:
x^2-2x-3=0
=>x=3 hoặc x=-1
=>A(3;9); B(-1;1)
d(A;Ox)=AD
=>D(3;0)
C là hình chiếu của B lên trục Ox nên C(-1;0)
=>ABCD là hình thang vuông
AD=9; BC=1; OD=3; OC=1
=>S ABCD=(9+1)*(3+1):2=20
b) Phương trình hoành độ giao điểm là:
\(2x+6=-x+3\)
\(\Leftrightarrow2x+x=3-6\)
\(\Leftrightarrow3x=-3\)
hay x=-1
Thay x=-1 vào (d), ta được:
\(y=2\cdot\left(-1\right)+6=-2+6=4\)
Vậy: A(-1;4)