K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

 Trường hợp 1: Đường thẳng d song song với BC.


Theo định lý Ta - lét ta có:\(\frac{BE}{EA}=\frac{OD}{OA}\frac{CD}{FA}=\frac{OD}{OA}\)

Suy ra : \(\frac{BE}{AE}+\frac{CF}{AF}=1\Leftrightarrow\frac{OD}{OA}+\frac{OD}{OA}=1\Leftrightarrow2OD=OA\left(1\right)\)

TRƯỜNG HỢP 2 LÀM TƯƠNG TỰ NHA :D

31 tháng 1 2021

A B C E F K

a , Vì \(\Delta ABC\)cân tại A => \(\widehat{ACB}=\widehat{ABC}\)

mà E \(\in\)AB => \(\widehat{ACB}=\widehat{EBK}\)( 1 )

Vì EK // AC => \(\widehat{EKB}=\widehat{ACB}\)( 2 )

TỪ ( 1 ) và ( 2 ) => \(\widehat{EBK}=\widehat{EKB}\)

=> \(\Delta EBK\)cân tại E

b , Đề bài thiếu :>

25 tháng 12 2023

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE(ΔBAD=ΔBED)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDAF=ΔDEC

=>AF=CE

c: Ta có: ΔDAF=ΔDEC

=>DF=DC

=>D nằm trên đường trung trực của CF(1)

ta có: IF=IC

=>I nằm trên đường trung trực của CF(2)

ta có: BA+AF=BF

BE+EC=BC

mà BA=BE và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(3)

Từ (1),(2),(3) suy ra B,D,I thẳng hàng

5 tháng 9 2023

Ta đặt:  \(S_{BEMF}=S_1;S_{ABC}=S\)

Kẻ \(AK\perp BC\) ; \(AK\) cắt \(EM\left\{H\right\}\)

Ta có: \(S_1=EM.HK\)

\(\Leftrightarrow S=\dfrac{1}{2}BC.AK\)

\(\Leftrightarrow\dfrac{S_1}{S}=2\dfrac{EM}{BC}.\dfrac{KH}{AK}\)

Đặt \(MA=x;MC=y\) . Theo định lý Thales ta có:

\(\dfrac{EM}{BC}=\dfrac{x}{x+y};\dfrac{HK}{AK}=\dfrac{x}{x+y}\)

\(\Leftrightarrow\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\)

Áp dụng bất đẳng thức Cosi dạng \(\dfrac{ab}{\left(a+b\right)^2}\le\dfrac{1}{4}\) ta được:

\(\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\le\dfrac{1}{2}\) hay \(S_1\le\dfrac{1}{2}S\)

\(\Leftrightarrow MaxS_1=\dfrac{1}{2}S\)

\(\Leftrightarrow\) \(M\) là trung điểm của \(AC\)