Cho tam giac ABC can tai B ke BH vuong goc AC ( H thuoc AC )
a) Chung minh: HA = HC
b) Ke HD vuong goc AB ( D thuoc AB ), HE vuong goc BC ( E thuoc BC ). Chung minh: HD = HE
c) Chung minh: tam giac BDE can
d) Chung minh: \(BE^2+DH^2=BC^2-HA^2\)
MINH DANG CAN GAP NHO CAC BAN GIUP CHO ( phan a, b, c cac ban co the lam hoac ko thi tuy nhung nho cac ban giup minh phan d )
CAM ON CAC BAN NHIEU