K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

\(4M=\dfrac{4}{\left(a+b\right)+\left(a+c\right)}+\dfrac{4}{\left(a+b\right)+\left(b+c\right)}+\dfrac{4}{\left(c+a\right)+\left(b+c\right)}\)

\(\le\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{b+c}\)

\(=\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

=> 8M \(\le\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=8\)

=> \(M\le1\)

Dấu "=" xảy ra <=> a = b = c = 3/4 

NV
30 tháng 12 2021

\(\dfrac{1}{2a+b+c}=\dfrac{1}{a+a+b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Tương tự:

\(\dfrac{1}{a+2b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)

Cộng vế:

\(M\le\dfrac{1}{16}\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

\(M_{max}=1\)  khi \(a=b=c=\dfrac{3}{4}\)

28 tháng 5 2021

Áp dụng bđt Cauchy - Schwarz ta có:\(Q=\dfrac{2-2a^2b^2}{\left(1+a^2\right)\left(1+b^2\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2\left(1-ab\right)\left(1+ab\right)}{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2\left(bc+ca\right)\left(1+ab\right)}{\left(a+b\right)^2\left(b+c\right)\left(c+a\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2c\left(1+ab\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2c\left(1+ab\right)}{\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}}+\dfrac{2}{\sqrt{1+c^2}}\le\dfrac{2c\left(1+ab\right)}{\sqrt{\left(ab+1\right)^2\left(c^2+1\right)}}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2c}{\sqrt{c^2+1}}+\dfrac{2}{\sqrt{c^2+1}}=\dfrac{2\left(c+1\right)}{\sqrt{c^2+1}}\le\dfrac{2\left(c+1\right)}{\sqrt{\dfrac{\left(c+1\right)^2}{2}}}=2\sqrt{2}\)Dấu "=" xảy ra khi a = b = \(\sqrt{2}-1;c=1\).

Vậy..

NV
27 tháng 1 2021

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)

\(\Rightarrow3.P\ge9\Rightarrow P\ge3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

3 tháng 7 2021

\(P=\dfrac{a}{4-3a}+\dfrac{b}{4-3b}+\dfrac{c}{4-3c}=\dfrac{a^2}{4a-3a^2}+\dfrac{b^2}{4b-3b^2}+\dfrac{c^2}{4c-3c^2}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{4\left(a+b+c\right)-3\left(a^2+b^2+c^2\right)}\) (BĐT Cauchy-Schwarz)

\(=\dfrac{1}{4-3\left(a^2+b^2+c^2\right)}\)

Ta có: \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow4-3\left(a^2+b^2+c^2\right)\le4-\left(a+b+c\right)^2=4-1=3\)

\(\Rightarrow\dfrac{1}{4-3\left(a^2+b^2+c^2\right)}\ge\dfrac{1}{3}\)

\(\Rightarrow P_{min}=\dfrac{1}{3}\) khi \(a=b=c=\dfrac{1}{3}\)

3 tháng 7 2021

Casch2:đặt \(\left\{{}\begin{matrix}4-3a=x\\4-3b=y\\4-3c=z\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}a=\dfrac{4-x}{3}\\b=\dfrac{4-y}{3}\\c=\dfrac{4-z}{3}\end{matrix}\right.\)\(x+y+z=9\)

\(=>P=\dfrac{4-x}{3x}+\dfrac{4-y}{3y}+\dfrac{4-z}{3z}=\dfrac{4}{3x}+\dfrac{4}{3y}+\dfrac{4}{3z}-\left(\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}\right)\)

\(=\dfrac{\left(2+2+2\right)^2}{3.9}-1=\dfrac{4}{3}-1=\dfrac{1}{3}\)

dấu"=" xảy ra<=>x=y=z=3<=>a=b=c=1/3

 

14 tháng 10 2021

\(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)

Áp dụng BĐT Svac

\(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\text{≥}\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)

Vì a+b+c=6 

\(\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{6^2}{12}=\dfrac{36}{12}=3\)

Còn lại thì bạn tự làm tiếp nha

14 tháng 10 2021

Bài này hình như tính giá trị biểu thức của abc,2 nhỉ

\(=\left(1^2+4^2\right)\left(a^2+\dfrac{1}{b^2}\right)\ge\left(1a+4.\dfrac{1}{b}\right)^2\\ \Rightarrow\sqrt{a^2+\dfrac{1}{vb^2}}\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}\right)\) 

Tương tự

\(\sqrt{b^2+\dfrac{1}{c^2}}\ge\dfrac{1}{\sqrt{17}}\left(b+\dfrac{4}{c}\right)\\ \sqrt{c^2+\dfrac{1}{a^2}}\ge\dfrac{1}{\sqrt{17}}\left(c+\dfrac{4}{a}\right)\\ Do.đó:\\ Q\ge\dfrac{1}{\sqrt{17}}\left(a+b+c+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)\ge\dfrac{1}{\sqrt{17}}\\ \left(a+b+c+\dfrac{36}{a+b+c}\right)\) 

\(=\dfrac{1}{\sqrt{17}}\\ \left[a+b+c+\dfrac{9}{4\left(a+b+c\right)}+\dfrac{135}{4\left(a+b+c\right)}\right]\\ \ge\dfrac{3\sqrt{17}}{2}\)

5 tháng 2 2022

Cái thứ nhất là tại sao có cái đầu tiên =)) cái thứ 2 dấu bằng xảy ra khi nào :V