Rút gọn
(49-20√(6))(5+2√(6))(√(5+2√(6))/9√(3)-11√(2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, 3^4
2, 5^405
3, -20/3
4, 4
KHÔNG BÍT ĐÚNG HAY KO =>HIHIHIHI
Lời giải:
Biểu thức \(=\frac{(5+2\sqrt{6})(25+24-2\sqrt{25.24})\sqrt{3+2-2\sqrt{3.2}}}{9\sqrt{3}-11\sqrt{2}}\)
\(=\frac{(5+2\sqrt{6})(\sqrt{25}-\sqrt{24})^2.\sqrt{(\sqrt{3}-\sqrt{2})^2}}{9\sqrt{3}-11\sqrt{2}}\)
\(=\frac{(5+2\sqrt{6})(5-2\sqrt{6})^2(\sqrt{3}-\sqrt{2})}{9\sqrt{3}-11\sqrt{2}}\)
\(=\frac{(5+2\sqrt{6})(5-2\sqrt{6})(5-2\sqrt{6})(\sqrt{3}-\sqrt{2})}{9\sqrt{3}-11\sqrt{2}}\)
\(=\frac{(5-2\sqrt{6})(\sqrt{3}-\sqrt{2})}{9\sqrt{3}-11\sqrt{2}}=\frac{9\sqrt{3}-11\sqrt{2}}{9\sqrt{3}-11\sqrt{2}}=1\)
Câu 1 xem kỉ đề
\(B,\frac{49^6.5-7^{11}}{\left(-7\right)^{10}.5-2.49^5}=\frac{7^{12}.5-7^{11}}{7^{10}.5-2.7^{10}}=\frac{7^{11}.\left(7.5-1\right)}{7^{10}.\left(5-2\right)}=\frac{7.34}{3}=\frac{238}{3}\)
a) A=212.35-\(\frac{2^{12}.3^6}{2^{12}}\)+93+84.35
=212.35-36+36+212.35
=213.35
b)B=496.5-5.\(\frac{7^{11}}{\left(-7\right)^{10}}-2.49^5\)
=496.5-7.5-2.495
=712.5-7.5-2.710
\(a,=-2\sqrt{5}+9\sqrt{5}-24\sqrt{5}-\sqrt{5}=-18\sqrt{5}\)
\(b,=2\sqrt{3}-5\sqrt{3}+4\sqrt{3}-7\sqrt{3}=-6\sqrt{3}\)
\(c,=3\sqrt{3}+7\sqrt{3}-9\sqrt{3}+11\sqrt{3}=12\sqrt{3}\)
a) Ta có: \(-\sqrt{20}+3\sqrt{45}-6\sqrt{80}-\dfrac{1}{5}\sqrt{125}\)
\(=-2\sqrt{5}+9\sqrt{5}-24\sqrt{5}-\dfrac{1}{5}\cdot5\sqrt{5}\)
\(=-17\sqrt{5}-\sqrt{5}=-18\sqrt{5}\)
b) Ta có: \(2\sqrt{3}-\sqrt{75}+2\sqrt{12}-\sqrt{147}\)
\(=2\sqrt{3}-5\sqrt{3}+4\sqrt{3}-7\sqrt{3}\)
\(=-6\sqrt{3}\)
Lời giải:
a.
\(=\sqrt{5+2.2\sqrt{5}+2^2}-\sqrt{5-2.2\sqrt{5}+2^2}\)
$=\sqrt{(\sqrt{5}+2)^2}-\sqrt{(\sqrt{5}-2)^2}$
$=|\sqrt{5}+2|-|\sqrt{5}-2|=(\sqrt{5}+2)-(\sqrt{5}-2)=4$
b.
$=\sqrt{3-2.3\sqrt{3}+3^2}+\sqrt{3+2.3.\sqrt{3}+3^2}$
$=\sqrt{(\sqrt{3}-3)^2}+\sqrt{(\sqrt{3}+3)^2}$
$=|\sqrt{3}-3|+|\sqrt{3}+3|$
$=(3-\sqrt{3})+(\sqrt{3}+3)=6$
c.
$=\sqrt{2+2.3\sqrt{2}+3^2}-\sqrt{2-2.3\sqrt{2}+3^2}$
$=\sqrt{(\sqrt{2}+3)^2}-\sqrt{(\sqrt{2}-3)^2}$
$=|\sqrt{2}+3|-|\sqrt{2}-3|$
$=(\sqrt{2}+3)-(3-\sqrt{2})=2\sqrt{2}$