Cho a,b,c > 0 . cmr : 1/a + 1/b + 1/c > hoặc = 3/(a + 2b) + 3/(b +2c) + 3/(c + 2a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có a,b,c>0;a+b>c,b+c>a,c+a>b
=>a+b-c>0,b+c-a>0,c+a-b>0
=>c2(a+b-c)>0,a2(b+c-a)>0,b2(c+a-b)>0
=>c2(a+b-c)+a2(b+c-a)+b2(c+a-b)>0
=>(đẳng thức đề bài) > 0
BĐT cần chứng minh tương đương với :
\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)
\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)
Áp dụng BĐT Cô-si cho 3 số dương ,ta có :
\(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)
tương tự : \(b^2c+bc^2+\frac{1}{bc^2}\ge3b\), \(\left(c^2a+ca^2+\frac{1}{ca^2}\right)\ge3c\)
Cộng 3 BĐT trên theo vế, ta được :
\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge3\left(a+b+c\right)=9\)
Dấu "=" xảy ra khi a = b = c = 1
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
TA có \(a^3+b^3+c^3\ge3abc\Rightarrow-a^3-b^3-c^3\le-3abc\)
Cần chứng minh \(a^2b+b^2c+c^2a+ca^2+bc^2+ab^2-3abc\ge0\)
\(=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a+c\right)-3abc\)
\(\ge abc+abc+abc-3abc=0\)
Áp dụng bất đẳng thức Cauchy-Schwartz, ta có: \(\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\ge\frac{\left(1+1+1\right)^2}{2a+b+2b+c+2c+a}=\frac{9}{3\left(a+b+c\right)}=\frac{3}{a+b+c}\)
Dấu "=" xảy ra khi: \(\frac{1}{2a+b}=\frac{1}{2b+c}=\frac{1}{2c+a}\Leftrightarrow2a+b=2b+c=2c+a\)
a,b,c > 0 nên 2a + b >0; 2b + c > 0; 2c + a > 0
Áp dụng BĐT Cauchy- schwarz:
\(VT=\text{Σ}_{cyc}\frac{1}{2a+b}\ge\frac{9}{3\left(a+b+c\right)}=\frac{3}{a+b+c}\)
Dấu "=" xảy ra khi a = b = c
\(\frac{3}{a+2b}=\frac{1}{3}.\frac{9}{a+b+b}\le\frac{1}{3}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)\)
Tương tự:\(\frac{3}{b+2c}\le\frac{1}{3}\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\frac{3}{c+2a}\le\frac{1}{3}\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\right)\)
Cộng theo vế ta được:
\(\frac{3}{a+2b}+\frac{3}{b+2c}+\frac{3}{c+2a}\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)