Tính giá trị của biểu thức sau biết x+y=0
A=x4-xy3+x3y-y4-1
giúp mik cách giải lun nha
cảm ơn mấy bạn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để A có giá trị bằng 1
suy ra 3 phải chia hết cho n-1
suy ra n-1 \(\in\)Ư(3)={1,3 }
TH1 n-1=1\(\Rightarrow\)n=1+1=2
TH2 n-1=3\(\Rightarrow\)n=3+1=4
Vậy n = 2 hoặc n =4
a) để biểu thức A có giá trị = 1 suy ra 3:n-1=1 suy ra n-1=3
n=4
b) để A là số nguyên tố suy ra 3:n-1 là số nguyên dương
từ trên suy ra n-1=1 hoặc 3
nếu n-1=1 suy ra n =2 3/n-1=3 là snt
nếu n-1=3 suy ra 3/n-1=3/3=1 loại vì ko là snt
\(A=\left|56-x\right|+\left|x+80\right|\)
Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:
\(A\ge\left|56-x+x+80\right|=136\)
Vậy GTNN của A là 136 khi \(-80\le x\le56\)
Ta có : \(\begin{cases}\left|56-x\right|\ge56-x\\\left|x+80\right|\ge x+80\end{cases}\)\(\Rightarrow\left|56-x\right|+\left|x+80\right|\ge56-x+x+80\)
\(\Rightarrow\left|56-x\right|+\left|x+80\right|\ge136\)
Dấu " = " xảy ra khi \(\begin{cases}56-x\ge0\\x+80\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\le56\\x\ge-80\end{cases}\)
Vậy MINA=136 khi \(-80\le x\le56\)
a, Thay x = -2 ; y = 3 ta được
\(A=\dfrac{4\left(-2\right)-5.3}{8\left(-2\right)-7.3}=\dfrac{-8-15}{-16-21}=\dfrac{23}{37}\)
b, Ta có \(\dfrac{x}{y}=\dfrac{5}{4}\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=k\Rightarrow x=5k;y=4k\)
Thay vào ta được \(A=\dfrac{4.5k-5.4k}{8.5k-7.4k}=\dfrac{0}{40k-28k}=0\)
Ta có:
x + 255 = (-47) + 45 + 255
= ( -47) + ( 45 + 255)
= (-47) + 300 = 300 - 47 = 253
=>3A=32+33+34+35....+3101
=>3A-A=3101-3
=>A=\(\frac{3^{101}-3}{2}\)
A=3+3^2+3^3+3^4+.....+3^100
Từ đó ta suy ra:
3A=3^2+3^3+....+3^101
2A=3A-A
2A=3^101-3
A=(3^101-3):2
Chúc em học tốt^^
a, ĐKXĐ: x≠±3
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\dfrac{-1}{x^2}\)
b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:
\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4
c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)
Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)