cho n/n^2-n+1=a tính P= n^2/n^4+n^2+1 theo a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{n}{n^2-n+1}=a\Leftrightarrow n=a\left(n^2-n+1\right)\)
\(\Leftrightarrow n^2=a^2\left(n^2-n+1\right)^2\)
\(\Leftrightarrow n^2=a^2\left(n^4+n^2+1-2n^3+2n^2-2n\right)\)
\(\Leftrightarrow n^2=a^2\left(n^4+n^2+1\right)-2a^2n\left(n^2-n+1\right)\)
\(\Leftrightarrow n^2=a^2\left(n^4+n^2+1\right)-2an^2\) ( vì \(a\left(n^2-n+1\right)=n\))
\(\Leftrightarrow n^2\left(2a+1\right)=a^2\left(n^4+n^2+1\right)\)
\(\Leftrightarrow\frac{n^2}{n^4+n^2+1}=\frac{a^2}{2a+1}\).
Bài 2 :
a) C = ( n + 1 )( n + 2 )( n + 3 )( n + 4 )
<=> C = [( n + 1 ).( n + 4 )].[( n + 2 ).( n + 3 )] + 1
<=> C = ( n2 + 5n + 4 ).( n2 + 5n + 6 ) + 1
Đặt t = n2 + 5n + 5
Suy ra : C = ( t - 1 ).( t + 1 ) + 1
=> C = t2 - 1 + 1
<=> C = t2 hay C = ( n2 + 5n + 5 )2
Vì n thuộc Z => n2 + 5n + 5 thuộc Z => C là số chính phương
( đpcm )
b) E = n2 + ( n + 1 )2 + n2 ( n + 1 )2
<=> E = n2 - 2n( n + 1 ) + ( n + 1 )2 + 2n( n + 1 ) + n2( n +1 )2
<=> E = [ n - ( n + 1 )]2 + 2n( n + 1 ) + [ n( n + 1 )]2
<=> E = ( n - n - 1 )2 + 2n( n + 1 ) + [ n( n + 1 )]2
<=> E = 12 + 2.1.n( n + 1 ) + [ n( n + 1 )]2
<=> E = [ n( n + 1 ) + 1 ]2
<=> E = ( n2 + n + 1 )2
Vì n thuộc Z => n2 + n + 1 thuộc Z => E là số chính phương
( đpcm )
Thêm dấu ngoặc vô đi b