K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b>0 

Ta có: \(\frac{4xy}{z+1}=\frac{4xy}{2z+x+y}\le\frac{xy}{x+z}+\frac{xy}{y+z}\)

Tương tự: \(\frac{4yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)

                \(\frac{4zx}{y+1}\le\frac{zx}{y+x}+\frac{zx}{y+z}\)

\(\Rightarrow4\left(\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\right)\le\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{zx}{y+x}+\frac{zx}{y+z}=x+y+z=1\)

\(\Rightarrow\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{1}{4}\)

Dấu "=" xảy ra khi: x=y=z>0

12 tháng 4 2018

Bài 2: 

+) Với y=0 <=> x=0

Ta có: 1-xy= 12 (đúng) 

+) Với \(y\ne0\)

Ta có: \(x^6+xy^5=2x^3y^2\)

\(\Leftrightarrow x^6-2x^3y^2+y^4=y^4-xy^5\)

\(\Leftrightarrow\left(x^3-y^2\right)^2=y^4\left(1-xy\right)\)

\(\Rightarrow1-xy=\left(\frac{x^3-y^2}{y^2}\right)^2\)

21 tháng 11 2019

\(x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=2\)

\(\Leftrightarrow x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(1+xy\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}=0\)

\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)

\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)=0\)

\(\Leftrightarrow x+y=\frac{xy+1}{x+y}\)

\(\Leftrightarrow xy+1=\left(x+y\right)^2\)

Vì x,y là các số hữu tỉ nên xy + 1 là bình phương của 1 số hữu tỉ (đpcm)

NM
20 tháng 3 2021

ta có 

\(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\Leftrightarrow\left(1-2x\right)\left(1-y\right)+\left(1-2y\right)\left(1-x\right)=\left(1-x\right)\left(1-y\right)\)

\(\Leftrightarrow1-2\left(x+y\right)+3xy=0\)

Vậy \(M=x^2+y^2-xy+\left(1-2\left(x+y\right)+3xy\right)=\left(x+y+1\right)^2\)

vậy ta có đpcm

13 tháng 1 2019

\(\frac{1-2x}{1-x}=1\)

\(\Leftrightarrow1-x=1-2x\)

\(\Leftrightarrow-x+2x=1-1\)

\(\Leftrightarrow x=0\)

Tương tự ta cũng có \(y=0\)

Khi đó : \(x^2+y^2-xy=0^2+0^2-0\cdot0=0=0^2\left(đpcm\right)\)

13 tháng 1 2019

Sai đề ạ:

\(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\)

AH
Akai Haruma
Giáo viên
1 tháng 4 2019

Lời giải:

Ta có: \(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\)

\(\Leftrightarrow \frac{(1-2x)(1-y)+(1-2y)(1-x)}{(1-x)(1-y)}=1\)

\(\Leftrightarrow (1-2x)(1-y)+(1-2y)(1-x)=(1-x)(1-y)\)

\(\Leftrightarrow 2x+2y-1=3xy\)

Khi đó:

\(x^2+y^2-xy=x^2+y^2+2xy-3xy\)

\(=x^2+y^2+2xy-(2x+2y-1)\)

\(=(x+y)^2-2(x+y)+1\)

\(=(x+y-1)^2\)

Vậy \(M=x^2+y^2-xy\) là bình phương của một số hữu tỉ (đpcm)

NV
3 tháng 5 2020

\(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\)

\(\Leftrightarrow\left(1-2x\right)\left(1-y\right)+\left(1-2y\right)\left(1-x\right)=\left(1-x\right)\left(1-y\right)\)

\(\Leftrightarrow1-2x-2y+3xy=0\)

\(\Rightarrow-xy=2xy-2x-2y+1\)

\(\Rightarrow M=x^2+y^2+2xy-2x-2y+1=\left(x+y-1\right)^2\) (đpcm)

30 tháng 8 2019

3/ Ta có:

\(x+y+z=0\)

\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)

\(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Ta có:

\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)

\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)

\(=-ax^2-by^2-cz^2\)

\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)

\(\Leftrightarrow ax^2+by^2+cz^2=0\)

30 tháng 8 2019

1/ Đặt \(a-b=x,b-c=y,c-z=z\)

\(\Rightarrow x+y+z=0\)

Ta có:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

15 tháng 12 2017

Câu hỏi của Hoàng Anh Trần - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo tại đây nhé. Chỉ cần thêm kết luận \(\sqrt{1-xy}\in Q\) nên 1 - xy là bình phương của số hữu tỉ.

4 tháng 10 2020

* Xét y = 0 thì x = 0 => 1 - xy = 1 (là bình phương của một số hữu tỉ)

* Xét y \(\ne\)0 thì chia hai vế của giả thiết cho y4, ta được: \(\frac{x^5}{y^4}+y=\frac{2x^2}{y^2}\Rightarrow\frac{x^6}{y^4}+xy=\frac{2x^3}{y^2}\Rightarrow1-xy=\frac{x^6}{y^4}-\frac{2x^3}{y^2}+1=\left(\frac{x^3}{y^2}-1\right)^2\)(là bình phương của một số hữu tỉ)

Vậy 1 - xy là bình phương của một số hữu tỉ (đpcm)