K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2019

Áp dụng BĐT AM-GM,ta có:

\(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+1\ge2y\end{cases}}\)

\(\Rightarrow\frac{1}{x^2+2y^2+3}\le\frac{1}{2xy+2y+2}\)

Chứng minh tương tự,ta có:

\(\frac{1}{y^2+2z^2+3}\le\frac{1}{2yz+2z+2}\)

\(\frac{1}{z^2+2x^2+3}\le\frac{1}{2zx+2x+2}\)

Cộng vế theo vế của các bất đẳng thức,ta có được:

\(VT\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)

Mặt khác,ta lại có được:

\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\)

\(=\frac{1}{xy+y+1}+\frac{xy}{xy+y+1}+\frac{y}{xy+y+1}\)

\(=1\)

\(\Rightarrow\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\cdot1=\frac{1}{2}\left(đpcm\right)\)

23 tháng 1 2019

Forever Miss You thiếu dấu "=" xảy ra khi nào:v

26 tháng 4 2020

\(\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\)

\(\frac{1}{x^2+y^2+y^2+1+2}+\frac{1}{y^2+z^2+z^2+1+2}+\frac{1}{z^2+x^2+x^2+1+2}\)

\(\le\frac{1}{2xy+2y+2}+\frac{1}{2yz+2z+2}+\frac{1}{2zx+2x+2}\)

\(\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)

\(\frac{1}{2}\left(\frac{zx}{xyzx+yzx+zx}+\frac{x}{yzx+zx+x}+\frac{1}{zx+x+1}\right)\)

\(\frac{1}{2}\left(\frac{zx}{x+1+zx}+\frac{x}{1+zx+x}+\frac{1}{zx+x+1}\right)\)

= 1/2

Dấu "=" xảy ra <=> x = y =z =1 

26 tháng 4 2020

Áp dụng BĐT AM-GM ta có:\(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+1\ge2y\end{cases}\Rightarrow\frac{1}{x^2+2y^2+3}\le\frac{1}{2xy+2y+2}}\)

Tương tự ta cũng có

\(\frac{1}{y^2+2x^2+3}\le\frac{1}{2yz+2z+2};\frac{1}{z^2+2x^2+3}\le\frac{1}{2xz+2x+2}\)

Do đó ta có:\(VT\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)

Mặt khác, do xyz=1 nên ta có:

\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=\frac{1}{xy+y+1}+\frac{y}{xy+y+1}+\frac{xy}{xy+y+1}\)

\(=\frac{xy+y+1}{xy+y+1}=1\)

\(\Rightarrow VT\le\frac{1}{2}\). Dấu "=" xảy ra <=> x=y=z=1

23 tháng 4 2017

Bạn CM x=y=z=1

Sau đó bạn thế số vào và bạn sẽ tính đc phân số là 3/6 rút gọn là 1/2

Cuối cùng bạn sẽ kết luận:

Vì 1/2 ≤ 1/2

Nên ...(biểu thức)...≤1/2

23 tháng 4 2017

CM x=y=z kiểu gì vậy???

10 tháng 12 2017

bạn ơi hình như có chút sai đề

25 tháng 9 2016

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

13 tháng 7 2017

đề đúng , giải sai kìa ...

13 tháng 10 2019

Câu 1:

\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)

\(\ge\frac{1}{8}+2+\frac{255}{256x^2y^2}\)

Ta lại có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow1\ge16x^2y^2\)

\(\Rightarrow M\ge\frac{17}{8}+\frac{255}{16}=\frac{289}{16}\)

Dấu = xảy ra khi x=y=1/2

13 tháng 10 2019

Áp dụng BDT Cauchy-Schwarz: \(\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\ge\frac{1}{3x+3y+2z}\)

CMTT rồi cộng vế với vế ta có.\(VT\le\frac{1}{16}\cdot4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{3}{2}\)

Dấu = xảy ra khi x=y=z=1

28 tháng 4 2019

uy bạn giỏi thế lớp 7 học toán 8 rồi af gh3 z