K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2019

Cảm ơn bạn! Hãy tổ chức thật nhiều cuộc thi như thế này nữa nhé

hihi

21 tháng 1 2019

Bình luận vào câu trả lời này cũng được vui

Hello các bạn! Sau khi bị xóa vòng 5 lần thì mk đã dừng tổ chức cuộc thi nhưng bấy giờ mk đã trở lại cùng với 1 cuộc thi mới tinh! Cuộc thi mang tên" LỄ HỘI ANIME ''Thể lệ cuộc thi:- Các bạn tìm và đăng ảnh hoặc vẽ và đăng nhá!Lưu ý: mk khuyến khích các bạn vẽ nhá! Ai vẽ đc +2 đ trung bình- Luật:+ Ko coppy+ Ko 18++ Ko đăng quá mức+ Ko đăng lạc đềChú ý: 1. Các bạn phải xem kĩ các...
Đọc tiếp

Hello các bạn! Sau khi bị xóa vòng 5 lần thì mk đã dừng tổ chức cuộc thi nhưng bấy giờ mk đã trở lại cùng với 1 cuộc thi mới tinh! Cuộc thi mang tên

" LỄ HỘI ANIME ''

Thể lệ cuộc thi:

- Các bạn tìm và đăng ảnh hoặc vẽ và đăng nhá!

Lưu ý: mk khuyến khích các bạn vẽ nhá! Ai vẽ đc +2 đ trung bình

- Luật:

+ Ko coppy

+ Ko 18+

+ Ko đăng quá mức

+ Ko đăng lạc đề

Chú ý: 1. Các bạn phải xem kĩ các bài trước để tránh trùng

2. Có quyền sửa, đổi ảnh trước khi BGK đã chấm

Và đây là vòng loại:

Chủ đề: Vẽ chủ đề tự do

Đăng ảnh anime girl bên hoa hướng dương hoặc Miziuki Aikatsu

Số lượng: Vẽ bao nhiêu cũng đc

Đăng 4 ảnh

Các CTV đc mk chọn trước là

1.HISINOMA KINIMADO vì chấm bài đúng lịch, hiểu về Anime

2. trần thiên an vì hiểu Aikatsu

3. Võ Thị Ngọc Khánh : có mắt thẩm mĩ cao

Ko biết các bạn có đồng ý ko! Nếu có thì nhắn tin cho mk nhá! Thanks

Mong các bạn tham gia cuộc thi của mk!😰 😤

1
6 tháng 1 2021

undefinedundefinedundefinedundefined

đây nhé bn

tick cho mk nha

11 tháng 1 2022

ảo ma à??

16 tháng 6

dở à bn gì ơi

 

6 tháng 3 2021

Câu 285

a) ĐKXĐ: $x\le 10.$

 \(PT\Leftrightarrow\left(\dfrac{x^3+7x^2+18x+4}{\sqrt{10-x}}-10\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\dfrac{\left(x^5+15x^4+100x^3+360x^2+740x+984\right)}{\sqrt{10-x}\left(x^3+7x^2+8x+4+10\sqrt{10-x}\right)}+1\right]=0\)

Rõ ràng biểu thức trong ngoặc vuông vô nghiệm.

Vậy $x=1$ (TMĐKXĐ)

b) Đặt $t=ab+bc+ca.$

 \(a,b,c\in\left[0,1\right]\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1.\) (1)

Từ (1) suy ra \(3abc\ge\sum c\left(a+b-1\right)=2t-\left(a+b+c\right)\ge2t-3\)

Cũng do $a,b,c\in \left[0,1\right]$ suy ra \(\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\Rightarrow abc\le\sum\left(ab-a\right)+1\)

Do đó"\(VT\le\sum\dfrac{a}{1+bc}+\sum\left(ab-a\right)+1\)

\(=\sum\left(\dfrac{a}{1+bc}-a\right)+\sum ab+1\)

\(=-abc\sum\dfrac{1}{1+bc}+ab+bc+ca+1\)

\(\le t+1-\dfrac{9abc}{t+3}\le t+1-\dfrac{3\left(2t-3\right)}{t+3}\le\dfrac{5}{2}\) 

\(\Leftrightarrow\left(2t-3\right)\left(3-t\right)\ge0\)

Do \(t\le\dfrac{\left(a+b+c\right)^2}{3}=3\) nên nếu $ab+bc+ca\ge \dfrac{3}{2}$ thì bất đẳng thức đúng.

Trong trường hợp ngược lại ta có \(VT\le t+1-\dfrac{9abc}{t+3}\le t+1\le\dfrac{3}{2}+1=\dfrac{5}{2}\) (đpcm)

Hoàn tất chứng minh.

Đẳng thức xảy ra khi (bạn đọc tự xét)

6 tháng 3 2021

290

Ta có \(\dfrac{a^4b}{a^2+1}=a^2b-\dfrac{a^2b}{a^2+1}\ge a^2b-\dfrac{a^2b}{2a}=a^2b-\dfrac{ab}{2}\)

Chứng minh tương tự ta được:  

\(\dfrac{b^4c}{b^2+1}\ge b^2c-\dfrac{bc}{2};\dfrac{c^4a}{c^2+1}\ge c^2a-\dfrac{ca}{2}\)

\(\Rightarrow\dfrac{a^4b}{a^2+1}+\dfrac{b^4c}{b^2+1}+\dfrac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\dfrac{ab}{2}-\dfrac{bc}{2}-\dfrac{ca}{2}\)

Áp dụng bđt Cô-si:

\(a^2b+a^2b+b^2c\ge3\sqrt[3]{a^2b\cdot a^2b\cdot b^2c}=3\sqrt[3]{a^3b^3\cdot abc}=3ab\)

Tương tự: \(b^2c+b^2c+c^2a\ge3bc;c^2a+c^2a+a^2b\ge3ca\)

\(\Rightarrow a^2b+a^2b+b^2c+b^2c+b^2c+c^2a+c^2a+c^2a+a^2b\ge3ab+3bc+3ca\Rightarrow3\left(a^2b+b^2c+c^2a\right)\ge3\left(ab+bc+ca\right)\Rightarrow a^2b+b^2c+c^2a\ge ab+bc+ca\)

\(\Rightarrow\dfrac{a^4b}{a^2+1}+\dfrac{b^4c}{b^2+1}+\dfrac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\dfrac{1}{2}\left(ab+bc+ca\right)\ge ab+bc+ca-\dfrac{1}{2}\left(ab+bc+ca\right)=\dfrac{1}{2}\left(ab+bc+ca\right)\ge\dfrac{3}{2}\sqrt[3]{\left(abc\right)^2}=\dfrac{3}{2}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

20 tháng 1 2019

Chúc mừng mọi người (CTV 1)

20 tháng 1 2019

Cảm ơn bạn

4 tháng 3 2021

Bài nào đó k ghi số nên không bt gọi ntn:

Chuẩn hóa x + y + z = 3. Ta cần cm \(x^2y+y^2z+z^2x+xyz\le4\).

Giả sử \(z=mid\left\{x,y,z\right\}\Rightarrow\left(x-z\right)\left(y-z\right)\le0\)

\(\Leftrightarrow xy+z^2\le xz+yz\)

\(\Leftrightarrow x^2y+xz^2\le x^2z+xyz\).

Từ đó \(x^2y+y^2z+z^2x+xyz\le x^2z+xyz+y^2z+xyz=z\left(x+y\right)^2\le\dfrac{\dfrac{\left(2z+x+y+x+y\right)^3}{27}}{2}=4\).

 

4 tháng 3 2021

Câu cuối:

Áp dụng BĐT BSC:

\(\dfrac{a}{\sqrt{a^2+b+c}}=\sqrt{\dfrac{a^2}{a^2+b+c}}=\sqrt{\dfrac{a^2\left(1+b+c\right)}{\left(a^2+b+c\right)\left(1+b+c\right)}}\le\sqrt{\dfrac{a^2\left(1+b+c\right)}{\left(a+b+c\right)^2}}\le\dfrac{a\sqrt{1+b+c}}{a+b+c}\)

Tương tự \(\dfrac{b}{\sqrt{b^2+c+a}}=\le\dfrac{b\sqrt{1+c+a}}{a+b+c}\)\(\dfrac{c}{\sqrt{c^2+a+b}}=\le\dfrac{c\sqrt{1+a+b}}{a+b+c}\)

Khi đó \(VT\le\Sigma\left(\dfrac{a}{a+b+c}.\sqrt{1+b+c}\right)\)

Giả sử \(a\ge b\ge c\)

Áp dụng BĐT Chebyshev với bộ \(\dfrac{a}{a+b+c};\dfrac{b}{a+b+c};\dfrac{c}{a+b+c}\) và \(\sqrt{1+b+c};\sqrt{1+c+a};\sqrt{1+a+b}\):

\(VT\le\dfrac{1}{3}\Sigma\dfrac{a}{a+b+c}.\Sigma\sqrt{1+a+b}=\dfrac{\Sigma\sqrt{1+a+b}}{3}\)

\(\le\dfrac{\sqrt{3\left(3+2a+2b+2c\right)}}{3}\)

\(\le\dfrac{\sqrt{9+6\sqrt{3\left(a^2+b^2+c^2\right)}}}{3}=\sqrt{3}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

6 tháng 3 2021

C280:

Áp dụng BĐT AM-GM và BĐT BSC:

\(\dfrac{1}{\sqrt{x+3y}}+\sqrt{x+3y}\ge2\Rightarrow\dfrac{1}{\sqrt{x+3y}}\ge2-\sqrt{x+3y}\)

\(\dfrac{1}{\sqrt{y+3z}}+\sqrt{y+3z}\ge2\Rightarrow\dfrac{1}{\sqrt{y+3z}}\ge2-\sqrt{y+3z}\)

\(\dfrac{1}{\sqrt{z+3x}}+\sqrt{z+3x}\ge2\Rightarrow\dfrac{1}{\sqrt{z+3x}}\ge2-\sqrt{z+3x}\)

\(\Rightarrow P=\dfrac{1}{\sqrt{x+3y}}+\dfrac{1}{\sqrt{y+3z}}+\dfrac{1}{\sqrt{z+3x}}\)

\(\ge6-\left(\sqrt{x+3y}+\sqrt{y+3z}+\sqrt{z+3x}\right)\)

\(\ge6-\sqrt{3\left(x+3y+y+3z+z+3x\right)}\)

\(=6-\sqrt{12\left(x+y+z\right)}=3\)

\(minP=3\Leftrightarrow a=b=c=\dfrac{1}{4}\)

6 tháng 3 2021

Bài 7) 

\(bđt\Leftrightarrow4\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow a^3+b^3+c^3+4ab\left(a+b\right)+4bc\left(b+c\right)+4ac\left(a+c\right)\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow4ab\left(a+b\right)+4bc\left(b+c\right)+4ac\left(a+c\right)\ge3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)+6abc\)\(\Leftrightarrow ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\ge6abc\)

\(\Leftrightarrow\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)

(Đúng theo Cô Si)

"=" khi a=b=c=1

3 tháng 3 2021

Câu 5 em thấy thầy làm từ chiều, em nghĩ anh nên đổi câu khác:

Cho \(x,y,z\ge0\).Tìm giá trị lớn nhất :\(P=\dfrac{x}{x^2 y^2 2} \dfrac{y}{y^2 z^2 2} \dfrac{z}{z^2 x^2 2}\) - Hoc24

3 tháng 3 2021

Câu 266 là >= chứ nhỉ?

Trang fanpage của cuộc thi đã có 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?Cuộc thi Trí tuệ VICE | FacebookMuốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 100.000đ nhé!--------------------------------------------[Toán.C111 _ 19.2.2021]Giải phương...
Đọc tiếp

Trang fanpage của cuộc thi đã có 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?

Cuộc thi Trí tuệ VICE | Facebook

Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>

Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 100.000đ nhé!

--------------------------------------------

[Toán.C111 _ 19.2.2021]

Giải phương trình: \(\dfrac{6a+7b}{6a}-\dfrac{3ax}{2b^2}=1-\dfrac{ax}{b^2-ab}\), với x là ẩn. Với những điều kiện nào thì phương trình có nghiệm số?

[Toán.C112 _ 19.2.2021]

Phân tích đa thức sau đây ra thừa số: \(a^{16}+a^8b^8+b^{16}\).

[Toán.C113 _ 19.2.2021]

Chứng minh rằng từ đẳng thức: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\) ta suy ra được \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{a^n+b^n+c^n}\) với n là số lẻ.

5
19 tháng 2 2021

C113

Ta có: \(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = \dfrac{1}{{a + b + c}} \Longrightarrow \dfrac{1}{a} + \dfrac{1}{b} = \dfrac{1}{{a + b + c}} - \dfrac{1}{c}\)

\(\begin{array}{l} \Longrightarrow \left( {a + b} \right)\left( {a + b + c} \right)c = abc - ab\left( {a + b + c} \right)\\ \Longrightarrow \left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right) = 0 \end{array}\)

............

19 tháng 2 2021

C112:

a16 + a8b8 + b16 

= a16 + 2a8b8 + b16 - a8b8

= (a8 + b8)2 - (a4b4)2

= (a8 + b8 - a4b4)(a8 + b8 + a4b4)

6 tháng 2 2021

Bài II:

1) \(PT\Leftrightarrow3x^2+2y^2+z^2+4xy+2yz+2zx=26\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+y\right)^2+x^2=26\).

Tách \(26=0^2+1^2+5^2=1^2+3^2+4^2\).

Mặt khác ta có x + y + z > x + y > x > 0 nên ta phải có x = 1; x + y = 3; x + y + z = 4.

Từ đó x = 1; y = 2; z = 1.

Vậy nghiệm nguyên dương của phương trình là (x, y, z) = (1; 2; 1).

6 tháng 2 2021

Bài I :

1 ĐKXĐ \(x\ge\dfrac{-1}{8}\) 

\(\Leftrightarrow9x+17-6\sqrt{8x+1}-4\sqrt{x+3}=0\) 

\(\Leftrightarrow8x+1-6\sqrt{8x+1}+9+x+3-4\sqrt{x+3}+4=0\)

\(\Leftrightarrow\left(\sqrt{8x+1}-3\right)^2+\left(\sqrt{x+3}-2\right)^2=0\) 

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{8x+1}-3=0\\\sqrt{x+3}-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{8x+1}=3\\\sqrt{x+3}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}8x+1=9\\x+3=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}8x=8\\x=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)

\(\Leftrightarrow x=1\left(TM\right)\)

 Vậy...