trong lần thi anime mắt kính lần trước bạn Cao Thị Ngọc Anh đc nhìu like nhất
nên bạn ấy đã thắng cuộc hãy bình luận để nhận giải nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 285
a) ĐKXĐ: $x\le 10.$
\(PT\Leftrightarrow\left(\dfrac{x^3+7x^2+18x+4}{\sqrt{10-x}}-10\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\dfrac{\left(x^5+15x^4+100x^3+360x^2+740x+984\right)}{\sqrt{10-x}\left(x^3+7x^2+8x+4+10\sqrt{10-x}\right)}+1\right]=0\)
Rõ ràng biểu thức trong ngoặc vuông vô nghiệm.
Vậy $x=1$ (TMĐKXĐ)
b) Đặt $t=ab+bc+ca.$
\(a,b,c\in\left[0,1\right]\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1.\) (1)
Từ (1) suy ra \(3abc\ge\sum c\left(a+b-1\right)=2t-\left(a+b+c\right)\ge2t-3\)
Cũng do $a,b,c\in \left[0,1\right]$ suy ra \(\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\Rightarrow abc\le\sum\left(ab-a\right)+1\)
Do đó"\(VT\le\sum\dfrac{a}{1+bc}+\sum\left(ab-a\right)+1\)
\(=\sum\left(\dfrac{a}{1+bc}-a\right)+\sum ab+1\)
\(=-abc\sum\dfrac{1}{1+bc}+ab+bc+ca+1\)
\(\le t+1-\dfrac{9abc}{t+3}\le t+1-\dfrac{3\left(2t-3\right)}{t+3}\le\dfrac{5}{2}\)
\(\Leftrightarrow\left(2t-3\right)\left(3-t\right)\ge0\)
Do \(t\le\dfrac{\left(a+b+c\right)^2}{3}=3\) nên nếu $ab+bc+ca\ge \dfrac{3}{2}$ thì bất đẳng thức đúng.
Trong trường hợp ngược lại ta có \(VT\le t+1-\dfrac{9abc}{t+3}\le t+1\le\dfrac{3}{2}+1=\dfrac{5}{2}\) (đpcm)
Hoàn tất chứng minh.
Đẳng thức xảy ra khi (bạn đọc tự xét)
290
Ta có \(\dfrac{a^4b}{a^2+1}=a^2b-\dfrac{a^2b}{a^2+1}\ge a^2b-\dfrac{a^2b}{2a}=a^2b-\dfrac{ab}{2}\)
Chứng minh tương tự ta được:
\(\dfrac{b^4c}{b^2+1}\ge b^2c-\dfrac{bc}{2};\dfrac{c^4a}{c^2+1}\ge c^2a-\dfrac{ca}{2}\)
\(\Rightarrow\dfrac{a^4b}{a^2+1}+\dfrac{b^4c}{b^2+1}+\dfrac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\dfrac{ab}{2}-\dfrac{bc}{2}-\dfrac{ca}{2}\)
Áp dụng bđt Cô-si:
\(a^2b+a^2b+b^2c\ge3\sqrt[3]{a^2b\cdot a^2b\cdot b^2c}=3\sqrt[3]{a^3b^3\cdot abc}=3ab\)
Tương tự: \(b^2c+b^2c+c^2a\ge3bc;c^2a+c^2a+a^2b\ge3ca\)
\(\Rightarrow a^2b+a^2b+b^2c+b^2c+b^2c+c^2a+c^2a+c^2a+a^2b\ge3ab+3bc+3ca\Rightarrow3\left(a^2b+b^2c+c^2a\right)\ge3\left(ab+bc+ca\right)\Rightarrow a^2b+b^2c+c^2a\ge ab+bc+ca\)
\(\Rightarrow\dfrac{a^4b}{a^2+1}+\dfrac{b^4c}{b^2+1}+\dfrac{c^4a}{c^2+1}\ge a^2b+b^2c+c^2a-\dfrac{1}{2}\left(ab+bc+ca\right)\ge ab+bc+ca-\dfrac{1}{2}\left(ab+bc+ca\right)=\dfrac{1}{2}\left(ab+bc+ca\right)\ge\dfrac{3}{2}\sqrt[3]{\left(abc\right)^2}=\dfrac{3}{2}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)
Bài nào đó k ghi số nên không bt gọi ntn:
Chuẩn hóa x + y + z = 3. Ta cần cm \(x^2y+y^2z+z^2x+xyz\le4\).
Giả sử \(z=mid\left\{x,y,z\right\}\Rightarrow\left(x-z\right)\left(y-z\right)\le0\)
\(\Leftrightarrow xy+z^2\le xz+yz\)
\(\Leftrightarrow x^2y+xz^2\le x^2z+xyz\).
Từ đó \(x^2y+y^2z+z^2x+xyz\le x^2z+xyz+y^2z+xyz=z\left(x+y\right)^2\le\dfrac{\dfrac{\left(2z+x+y+x+y\right)^3}{27}}{2}=4\).
Câu cuối:
Áp dụng BĐT BSC:
\(\dfrac{a}{\sqrt{a^2+b+c}}=\sqrt{\dfrac{a^2}{a^2+b+c}}=\sqrt{\dfrac{a^2\left(1+b+c\right)}{\left(a^2+b+c\right)\left(1+b+c\right)}}\le\sqrt{\dfrac{a^2\left(1+b+c\right)}{\left(a+b+c\right)^2}}\le\dfrac{a\sqrt{1+b+c}}{a+b+c}\)
Tương tự \(\dfrac{b}{\sqrt{b^2+c+a}}=\le\dfrac{b\sqrt{1+c+a}}{a+b+c}\); \(\dfrac{c}{\sqrt{c^2+a+b}}=\le\dfrac{c\sqrt{1+a+b}}{a+b+c}\)
Khi đó \(VT\le\Sigma\left(\dfrac{a}{a+b+c}.\sqrt{1+b+c}\right)\)
Giả sử \(a\ge b\ge c\)
Áp dụng BĐT Chebyshev với bộ \(\dfrac{a}{a+b+c};\dfrac{b}{a+b+c};\dfrac{c}{a+b+c}\) và \(\sqrt{1+b+c};\sqrt{1+c+a};\sqrt{1+a+b}\):
\(VT\le\dfrac{1}{3}\Sigma\dfrac{a}{a+b+c}.\Sigma\sqrt{1+a+b}=\dfrac{\Sigma\sqrt{1+a+b}}{3}\)
\(\le\dfrac{\sqrt{3\left(3+2a+2b+2c\right)}}{3}\)
\(\le\dfrac{\sqrt{9+6\sqrt{3\left(a^2+b^2+c^2\right)}}}{3}=\sqrt{3}\)
Đẳng thức xảy ra khi \(a=b=c=1\)
C280:
Áp dụng BĐT AM-GM và BĐT BSC:
\(\dfrac{1}{\sqrt{x+3y}}+\sqrt{x+3y}\ge2\Rightarrow\dfrac{1}{\sqrt{x+3y}}\ge2-\sqrt{x+3y}\)
\(\dfrac{1}{\sqrt{y+3z}}+\sqrt{y+3z}\ge2\Rightarrow\dfrac{1}{\sqrt{y+3z}}\ge2-\sqrt{y+3z}\)
\(\dfrac{1}{\sqrt{z+3x}}+\sqrt{z+3x}\ge2\Rightarrow\dfrac{1}{\sqrt{z+3x}}\ge2-\sqrt{z+3x}\)
\(\Rightarrow P=\dfrac{1}{\sqrt{x+3y}}+\dfrac{1}{\sqrt{y+3z}}+\dfrac{1}{\sqrt{z+3x}}\)
\(\ge6-\left(\sqrt{x+3y}+\sqrt{y+3z}+\sqrt{z+3x}\right)\)
\(\ge6-\sqrt{3\left(x+3y+y+3z+z+3x\right)}\)
\(=6-\sqrt{12\left(x+y+z\right)}=3\)
\(minP=3\Leftrightarrow a=b=c=\dfrac{1}{4}\)
Bài 7)
\(bđt\Leftrightarrow4\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)
\(\Leftrightarrow a^3+b^3+c^3+4ab\left(a+b\right)+4bc\left(b+c\right)+4ac\left(a+c\right)\ge\left(a+b+c\right)^3\)
\(\Leftrightarrow4ab\left(a+b\right)+4bc\left(b+c\right)+4ac\left(a+c\right)\ge3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)+6abc\)\(\Leftrightarrow ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\ge6abc\)
\(\Leftrightarrow\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)
(Đúng theo Cô Si)
"=" khi a=b=c=1
Câu 5 em thấy thầy làm từ chiều, em nghĩ anh nên đổi câu khác:
Cho \(x,y,z\ge0\).Tìm giá trị lớn nhất :\(P=\dfrac{x}{x^2 y^2 2} \dfrac{y}{y^2 z^2 2} \dfrac{z}{z^2 x^2 2}\) - Hoc24
C113
Ta có: \(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = \dfrac{1}{{a + b + c}} \Longrightarrow \dfrac{1}{a} + \dfrac{1}{b} = \dfrac{1}{{a + b + c}} - \dfrac{1}{c}\)
\(\begin{array}{l} \Longrightarrow \left( {a + b} \right)\left( {a + b + c} \right)c = abc - ab\left( {a + b + c} \right)\\ \Longrightarrow \left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right) = 0 \end{array}\)
............
C112:
a16 + a8b8 + b16
= a16 + 2a8b8 + b16 - a8b8
= (a8 + b8)2 - (a4b4)2
= (a8 + b8 - a4b4)(a8 + b8 + a4b4)
Bài II:
1) \(PT\Leftrightarrow3x^2+2y^2+z^2+4xy+2yz+2zx=26\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+y\right)^2+x^2=26\).
Tách \(26=0^2+1^2+5^2=1^2+3^2+4^2\).
Mặt khác ta có x + y + z > x + y > x > 0 nên ta phải có x = 1; x + y = 3; x + y + z = 4.
Từ đó x = 1; y = 2; z = 1.
Vậy nghiệm nguyên dương của phương trình là (x, y, z) = (1; 2; 1).
Bài I :
1 ĐKXĐ \(x\ge\dfrac{-1}{8}\)
\(\Leftrightarrow9x+17-6\sqrt{8x+1}-4\sqrt{x+3}=0\)
\(\Leftrightarrow8x+1-6\sqrt{8x+1}+9+x+3-4\sqrt{x+3}+4=0\)
\(\Leftrightarrow\left(\sqrt{8x+1}-3\right)^2+\left(\sqrt{x+3}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{8x+1}-3=0\\\sqrt{x+3}-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{8x+1}=3\\\sqrt{x+3}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}8x+1=9\\x+3=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}8x=8\\x=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)
\(\Leftrightarrow x=1\left(TM\right)\)
Vậy...
Cảm ơn bạn! Hãy tổ chức thật nhiều cuộc thi như thế này nữa nhé
Bình luận vào câu trả lời này cũng được