tập hợp các số nguyên x thỏa mãn: (x-1)(2x-1)(x2+2)<0 có số phần tử là:
A.0
B.1
C.2
D.3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-2\right)\left(3x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
-> chọn C
Lời giải:
$|x+2|+2|x+2|=3$
$3|x+2|=3$
$|x+2|=1$
$\Rightarrow x+2=1$ hoặc $x+2=-1$
$\Rightarrow x=-1$ hoặc $x=-3$
Vậy có 2 giá trị nguyên của $x$ thỏa mãn
Đáp án C.
* Nếu x = 0 :
=> (x - 1) < 0 ; (2x - 1) < 0 ; x2 + 2 > 0
=> (x -1)(2x - 1)(x2 + 2) > 0 (loại)
* Nếu \(x\ge1\)
=> (x - 1) \(\ge\)0 ; (2x -1) > 0 ; (x2 + 2) > 0
=> (x -1)(2x - 1)(x2 + 2) \(\ge\)0 (loại)
Vậy tập hợp các số nguyên x thoả mãn có số phần tử là 0.
C.2 phần tử nha bạn huyền