Cho hình chữ nhật ABCD có 2AD = AB. điểm M trên DC sao cho góc MAD = 15 độ. Chứng minh tam giác ABM cân.
bài này là bài lớp 8 nên không dùng sin, cos nhé
giúp mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
vẽ tam đều AMO , O nằm trong tam giác AMB, từ O kẻ OK vuông góc AB c/m tam giác AOK=tam giác AMD =>AD=AK=AB/2=> tam giác AOB cân =>OK là tia phân giác của AOB=> AOB=150 độ =>DOC=360-60-150=150 độ => tam giác AOB=tam giác DOC => AB=Bm =. tam giác ABM cân
Hay qua! Nhưng chỉ có:
Tam giác AOB = tam giác MOB (Góc MOB = góc AOB = 150 độ, OB chung, OM=MB (tam giác đều)). => AB = AM => tam giác ABM cân tại B.
Bài 5:
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
Bài 2:
a: Xét ΔABC có
\(\dfrac{BM}{AB}=\dfrac{CN}{AC}\)
Do đó: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
b: Ta có: \(\widehat{B}=\widehat{C}=\dfrac{180^0-40^0}{2}=70^0\)
\(\widehat{BMN}=\widehat{CNM}=180^0-70^0=110^0\)