K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

n=11

20 tháng 10 2021

cách giải

7 tháng 8 2023

a) \(25⋮n+2\left(n\in Z\right)\)

\(\Rightarrow n+2\in\left\{-1;1;-5;5;-25;25\right\}\)

\(\Rightarrow n\in\left\{-3;-1;-7;3;-27;23\right\}\)

b) \(2n+4⋮n-1\)

\(\Rightarrow2n+4-2\left(n-1\right)⋮n-1\)

\(\Rightarrow2n+4-2n+2⋮n-1\)

\(\Rightarrow6⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-2;4;-5;7\right\}\)

c) \(1-4n⋮n+3\)

\(\Rightarrow1-4n+4\left(n+3\right)⋮n+3\)

\(\Rightarrow1-4n+4n+12⋮n+3\)

\(\Rightarrow13⋮n+3\)

\(\Rightarrow n+3\in\left\{-1;1;-13;13\right\}\)

\(\Rightarrow n\in\left\{-4;-2;-15;10\right\}\)

7 tháng 8 2023

a) n ϵ{3;1;7;3;27;23}

b) {0;2;1;3;2;4;5;7}

c) n ϵ {4;2;15;10}

1 tháng 8 2015

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

13 tháng 10 2015

1. n = 301

2.a) n = 99

b) không có

c) n = 774

15 tháng 11 2016

bạn đó làm sai ùi,thế này mới đúng:

n+3 chia hết n-2 suy ra(n-2)+5 chia hết cho n-2

vì n-2 chia hết cho n-2 nên 5 chia hết cho n-2

suy ra n-2=1 hoặc 5 nên n=3 hoặc 7

15 tháng 11 2016

Kết quả n là:

 0

23 tháng 2 2016

a) n+2 chia hết cho n-1

n+2=n-1+3 chia hết cho n-1

=> 3 chia hết cho n-1 hay n-1\(\in\)Ư(3)={-1;1;-3;3}

n\(\in\){0;2;-2;4}

b) 2n-3 là bội của n+4 nghĩa là 2n-3 chia hết cho n+4

2n-3=2(n+4)-11 chia hết cho n+4

=> 11 chia hết cho n+4 hay n+4\(\in\)Ư(11)={-1;1;-11;11}

n\(\in\){-5;-3;-15;7}

c)  n-7 chia hết cho 2n+3

n-7=2(n-7) chia hết cho 2n+3

2(n-7)=2n+3-17 chia hết cho 2n+3

=> 17 chia hết cho 2n+3 hay 2n+3\(\in\)Ư(17)={-1;1;-17;17}

n\(\in\){-2;-1;-10;7}

d) n+5 chia hết cho n-2

n+5=n-2+7 chia hết cho n-2

=> 7 chia hết cho n-2 hay n-2\(\in\)Ư(7)={-1;1;-7;7}

n\(\in\){1;3;-5;9}

e) n-2 là bội của n+3 

n2-2=n(n+3)-3n-2=n(n+3)-3(n+3)+7 chia hết cho n-2

n(n+3) và 3(n+3) cùng chia hết cho n+3

=> 7 chia hết cho n+3 hay n+3\(\in\)Ư(7)={-1;1;-7;7}

n\(\in\){-4;-2;-10;4}

f) 3n-13 là ước của n-2 nghĩa là n-2 chia hết cho 3n-13

n-2 chia hết cho 3n-13 => 3(n-2) chia hết cho 3n-13

 3(n-2)=3n-13+7 chia hết cho 3n-13

=> 7 chia hết cho 3n-13 hay 3n-13\(\in\)Ư(7)={-1;1-7;7}

n\(\in\){4;2;}

g) In+19I + In+5I + In+2011I = 4n

n+19+n+5+n+2011=-4n

TH1: 3n+2035=-4n => n=(-2035) :7 (loại)

TH2: n+19+n+5+n+2011=4n

3n+2035=4n => n=2035

làm hộ?????

10 tháng 3 2020

3)

3n+7\(⋮2n+1\)

vì \(3n+7⋮3n+7\)

=>\(2\left(3n+7\right)⋮3n+7\)

=> 6n+7\(⋮3n+7\)

vì \(2n+1⋮2n+1\)

\(\Rightarrow3\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+1⋮2n+1\)

\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)

\(\Rightarrow6⋮2n+1\)

đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé