Cho tam giác ABC vuông tại A, AB = 9cm, AC = 12cm, đường cao AH. Kẻ HK vuông góc với AC tại K, kẻ HG vuông góc với AB tại G.
a)Tính độ dài đoạn AH và các tỉ số lượng giác của góc B ; từ đó suy ra các tỉ số lượng giác của góc C.
b)Chứng minh rằng: AC/HC=HB/AK
tam giác ABC vuông tại A có
* BC2=AB2+AC2
BC2=92+122=225
BC=15cm
* AH.BC=AB.AC
AH.15=9.12
AH.15=108
AH=7,2cm
\(sinB=\dfrac{4}{5};cosB=\dfrac{3}{5};tanB=\dfrac{4}{3};cotanb=\dfrac{3}{4}\)
\(=>sinC=\dfrac{3}{5};cosC=\dfrac{4}{5};tanC=\dfrac{3}{4};cotanC=\dfrac{4}{3}\)
b)
tam giác ABC vuông tại A có
AC.AK=AH2
HB.HC=AH2
=>AC.AK=HB.HC
\(=>\dfrac{AC}{HC}=\dfrac{HB}{AK}\)