Phân tích các đa thức sau thành nhân tử
a) x^2+2xy-9+y^2
b) 5x^2 - 10xy + 5y^2 -20z^2
c) x^2 - 7x + 10
d) 2x^2 + 7x +6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ (5x^2 -10xy+5y^2)-20z^2=5[(x-y)^2-(2z)^2]=5(x-y-2x)(x-y+2z)
b/16x-5x^2-3=-[5x^2-16x+3]=-[(5x^2-x)-(15x+3)]=-[x(5x-1)-3(5x-1)]=(3-x)(5x-1)
c/x^2+4x+3=(x^2+x)+(3x+3)=x(x+1)+3(x+1)=(x+1)(x+3)
2a/ 5x(X^2-9)=0=>x=0 hoặc x^2=9=>x=0 hoặc x=+-3
b/x^2-7x+10=0=>(x^2-2x)-(5x-10)=0=>x(x-2)-5(x-2)=0=>x-2=0 hoặc x-5 =0 => tự tính nhé!
Answer:
Bài 1:
\(5x² - 10xy + 5y² - 20z²\)
\(= 5( x² - 2xy + y² - 4z²)\)
\(= 5 [(x² - 2xy + y²) - (2z)²]\)
\(= 5 [(x - y)² - (2z)²]\)
\(= 5 (x - y - 2z) ( x - y + 2z)\)
\(16x - 5x² - 3 \)
\(= -( 5x² - 16x + 3)\)
\(= -( 5x² - 15x - 1x + 3)\)
\(= - [ (5x² -x) - (15x -3)]\)
\(= - [ x(5x -1) -3(5x -1)]\)
\(= - (5x-1)(x-3)\)
\(x² + 4x + 3\)
\(= x² + x + 3x + 3\)
\(= (x² + x) + (3x + 3)\)
\(= x( x + 1) +3 (x+1)\)
\(= (x+1) (x+3)\)
Bài 2:
\(5x\left(x^2-9\right)=0\)
\(\Rightarrow5x\left(x-3\right)\left(x+3\right)=0\)
Trường hợp 1: \(5x=0\Leftrightarrow x=0\)
Trường hợp 2: \(x-3=0\Leftrightarrow x=3\)
Trường hợp 3: \(x+3=0\Leftrightarrow x=-3\)
\(x^2-7x+10=0\)
\(\Rightarrow x^2-5x-2x+10=0\)
\(\Rightarrow x\left(x-5\right)-2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}}\)
a) \(x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
a) \(^{x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)}\)
b)\(a^3-a^2x-ay=a\left(a^2-a.x-y\right)\)
c)\(5x^2-10xy+5y-20z^2=-20z^2+\left(5-10x\right)y+5x^2 \)
\(=-5\left(4z^2+2xy-y-x^2\right)\)
d)\(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3xy^2+3x^2y+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
5x2-10xy+5y2-20z2
=5(x2-2xy+y2-4z2)
=5[(x-y)2-4z2]
=5(x-y-2z)(x-y+2z)
dễ hiểu thôi.hơi vắn tắt
a) x4 + 2x3 + x2
= x2 ( x2 + 2x + 1 )
= x2 ( x + 1 )2
b) 5x2 - 10xy + 5y2 - 20z2
= 5 [(x2 - 2xy + y2 ) - 4z2 ]
= 5 [( x - y )2 - ( 2z )2 ]
= 5 ( x - y - 2z ) ( x - y + 2z )
c) x3 - x + 3x2y + 3xy2+ y3- y
= ( x3 + 3x2y + 3xy2 + y3 ) - ( x + y )
= (x + y )3 - ( x + y)
= ( x + y ) [( x + y )2 - 1 ]
= ( x + y ) ( x + y + 1 ) ( x + y - 1 )
1)
a) => 16x2 - 8x + 1 - 8(2x2 + 3x - 4x - 6) = 15
=> 16x2 - 8x + 1 - 8(2x2 - x - 6) = 15
=> 16x2 - 8x + 1 - 16x2 + 8x + 48 = 15
=> 49 = 15 (?) (vô lí)
=> Không tìm được x thoả mãn
b) (5x - 2)(x - 2) - 4(x - 3) = x2 + 3
=> 5x2 - 10x - 2x + 4 - 4x + 12 = x2 + 3
=> 5x2 - 16x + 16 = x2 + 3
=> 4x2 - 16x + 16 = 3
=> (2x)2 - 2.2x.4 + 42 = 3
=> (2x - 4)2 = 3
=> \(\left[{}\begin{matrix}2x-4=\sqrt{3}\\2x-4=-\sqrt{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4+\sqrt{3}}{2}\\x=\dfrac{4-\sqrt{3}}{2}\end{matrix}\right.\)
Mong bạn xem lại đề bài!
2)
a) 5x2 - 10xy + 5y2 - 20z2
= 5(x2 - 2xy + y2 - 4z2)
= 5[(x - y)2 - (2z)2]
= 5(x - y - 2z)(x - y + 2z)
b) a3 - ay - a2x + xy
= a(a2 - y) - x(a2 - y)
= (a - x)(a2 - y)
c) 3x2 - 6xy + 3y2 - 12z2
= 3(x2 - 2xy + y2 - 4z2)
= 3[(x - y)2 - (2z)2]
= 3(x - y - 2z)(x - y + 2z)
d) x2 - 2xy + tx - 2ty
= x(x - 2y) + t(x - 2y)
= (x + t)(x - 2y)
a: \(x^4+2x^3+x^2=x^2\left(x+1\right)^2\)
b: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
Câu 2 nha
\(a,x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(c,x^2-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
a) (x^2+2xy+y^2)-9=(x+y)^2-9=(x+y-3)(x+y+3)
b) 5(x^2-2xy+y^2-4z^2)=5[(x-y)^2-4z^2]=5[(x-y-2z)(x-y+2z)
c)x^2-2x-5x+10=x(x-2)-5(x-2)=(x-5)(x-2)
d)2x^2-4x-3x+6=2x(x-2)-3(x-2)=(2x-3)(x-2)