K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

\(S=\left(n^2+n-1\right)^2-1\)

\(S=\left(n^2+n-1\right)^2-1^2\)

\(S=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)

\(S=\left(n^2+n-2\right)\left(n^2+n\right)\)

\(S=n\left(n+1\right)\left(n^2+2n-n-2\right)\)

\(S=n\left(n+1\right)\left[n\left(n+2\right)-\left(n+2\right)\right]\)

\(S=n\left(n+1\right)\left(n-2\right)\left(n-1\right)\)

Dễ thấy S là tích của 4 số nguyên liên tiếp, do đó S chia hết cho 24 ( đpcm )

9 tháng 1 2019

\(S=\left(n^2+n-1\right)^2-1\)

    \(=\left(n^2+n-1\right)^2-1^2\)

    \(=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)

     \(=\left(n^2+n-2\right)\left(n^2+n\right)\)

      \(=\left(n^2-n+2n-2\right)\left(n^2+n\right)\)

        \(=\left[n\left(n-1\right)+2\left(n-1\right)\right]\left(n+1\right).n\)

        \(=\left(n-1\right)\left(n+2\right)\left(n+1\right)n\)

          \(=\left(n-1\right).n.\left(n+1\right)\left(n+2\right)\)

Tích của 4 số liên tiếp luôn chia hết cho 24

\(\Rightarrow S⋮24\)

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

\(n\left(n+1\right)\left(n+2\right)\)là 3 số thứ nhiên liên tiếp 

\(=>n^2\left(n+1\right)+2n\left(n+1\right)\)chia hết cho \(6\left(đpcm\right)\)

7 tháng 7 2016

                                 \(n^2\left(n+1\right)+2n\left(n+1\right)\)

                             \(=\left(n+1\right)\left(n^2+2n\right)\)

                            \(=n\left(n+1\right)\left(n+2\right)\)

                          \(n\left(n+1\right)\left(n+2\right)\)là 3 số tự nhiên liên tiếp

                        \(\Rightarrow n^2\left(n+1\right)+2n\left(n+1\right)\)chia hết cho 6 (ĐPCM)

                          Ủng hộ mk nha!!!

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

27 tháng 11 2016

Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)

=b(a−1)a(a+1)−a(b−1)b(b+1)

Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6

=> b(a−1)a(a+1);a(b−1)b(b+1)6a3bab36a3b−ab36

 

27 tháng 11 2016

mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha

20 tháng 7 2018

a) \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12.2n\)

\(=24n\)

Vì 24n chia hết cho 24 với mọi n

=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)

b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+3\right)\left(n+1\right)\)

Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )

Thay n = 2k + 1 vào ta được

\(\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)\)

\(=4\left(k+2\right)\left(k+1\right)\)

Vì (k + 2)(k + 1) là tích của hai số liên tiếp

=> (k + 2)(k + 1) chia hết cho 2

=> 4(k + 2)(k + 1) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )

c) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)\)

\(=4.2\left(n+1\right)\)

\(=8\left(n+1\right)\)

Vì 8(n + 1) chia hết cho 8 với mọi n

=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )

6 tháng 6 2017

a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\)\(5⋮5\) (1)

\(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)

Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)

b, \(n^3\left(n^2-7\right)-36n\)

\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)

\(=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)

6 tháng 6 2017

Bn Mai Xuân Phong ơi!Câu a, 5x3hay là 5n3 vậy?

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với

14 tháng 8 2019

\(b,n^2\left(n^4-1\right)\)

\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)

Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp

\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)

\(\Rightarrowđpcm\)

=> 

22 tháng 10 2017

\(\text{ Ta có : }\left(n+2\right)^2-\left(n+2\right)^2=0⋮8\left(đpcm\right)\)

Vậy...............

Sai đề rồi :))

22 tháng 10 2017

\(\left(n+2\right)^2-\left(n-2\right)^2⋮8\)

\(\text{Ta có : }\left(n+2\right)^2-\left(n-2\right)^2\\ \\ =\left(n+2+n-2\right)\left(n+2-n+2\right)\\ \\ =2n\cdot4\\ \\ =8n⋮8\left(đpcm\right)\)

Vậy \(\left(n+2\right)^2-\left(n-2\right)^2⋮8\)