Câu 1 : Cho hàm số y = x^3 +3x^2+mx+m-2 Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai điểm cực trị nằm về hai phía của trục hoành.
Câu 2: Cho hàm số y=x^3 +3mx^2 +m+1 . Tìm giá trị của m để đồ thị hàm số có 2 điểm cực trị A, B sao cho đường thẳng AB// với đường thẳng x+y =2017
1/ \(y=x^3+3x^2+mx+m-2\)
\(y'=3x^2+6x+m\)
Chia đa thức \(y\) cho \(y'\) được phần dư là \(\left(\dfrac{2m}{3}-2\right)x+\dfrac{2m}{3}-2\)
\(\Rightarrow\)Phương trình đường thẳng \(d\) đi qua 2 cực trị có dạng:
\(y=\left(\dfrac{2m}{3}-2\right)x+\dfrac{2m}{3}-2\)
Gọi A là giao điểm của \(d\) với \(Ox\Rightarrow A\left(-1;0\right)\)
Đồ thị hàm số có 2 cực trị B, C nằm về 2 phía trục hoành khi và chỉ khi A nằm giữa B và C
\(\Rightarrow x_B< -1< x_C\) với \(x_B;x_C\) là nghiệm của pt \(f\left(x\right)=3x^2+6x+m=0\)
\(\Rightarrow3.f\left(-1\right)< 0\Leftrightarrow3\left(3-6+m\right)< 0\Rightarrow m< 3\)
Vậy với \(m< 3\) thì đồ thị hs có 2 cực trị nằm về 2 phía trục hoành
2/
\(y=x^3+3mx^2+m+1\Rightarrow y'=3x^2+6mx\)
Để hàm số có 2 cực trị \(\Rightarrow m\ne0\)
Chia đa thức \(y\) cho \(y'\) được phân dư \(-2m^2x+m+1\)
\(\Rightarrow\) phương trình đường thẳng \(d\) qua 2 cực trị có dạng:
\(y=-2m^2x+m+1\)
Để \(d\) song song đường thẳng \(y=-x+2017\)
\(\Rightarrow\left\{{}\begin{matrix}-2m^2=-1\\m+1\ne2017\end{matrix}\right.\) \(\Rightarrow m=\pm\dfrac{\sqrt{2}}{2}\)