K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2015

B đâu rồi ? có chắc A sao mà so sánh được

4 tháng 8 2016

pn lấy đề ở đâu vậy ?

5 tháng 8 2016

Ở lớp học thêm c ạ

4 tháng 11 2018

\(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{5+2\sqrt{5}+1}}=\sqrt{\sqrt{\left(\sqrt{5}+1\right)^2}}=\sqrt{\sqrt{5}+1}< \sqrt{\sqrt{6}+1}\)

23 tháng 11 2017

Ta sẽ chứng minh 1 bđt sau:

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)

\(\Rightarrow a+2\sqrt{ab}+b\ge a+b\)

\(\Rightarrow a+2\sqrt{ab}+b-a-b\ge0\)

\(\Rightarrow2\sqrt{ab}\ge0\) *đúng*

Dấu "=" xảy ra khi: \(ab=0\)

Trở lại bài toán,vì không có thừa số nào bằng 0,nên ta dễ dàng có: \(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)

Hay \(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}=\left(\sqrt{1}+\sqrt{20}\right)+\left(\sqrt{40}+\sqrt{2}\right)+\left(\sqrt{60}+\sqrt{3}\right)>\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}=A\)

4 tháng 11 2018

m kmnhbk5htb ,k55555555555555555555555555555555555e,

4 tháng 11 2018

\(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{6+2\sqrt{5}}}=\sqrt{\sqrt{\left(\sqrt{5}+1\right)^2}}=\sqrt{\sqrt{5}+1}\)

Vì \(\sqrt{\sqrt{5}+1}< \sqrt{\sqrt{6}+1}\Rightarrow\sqrt{\sqrt{6+\sqrt{20}}}< \sqrt{1+\sqrt{6}}\)