So sánh A và B,biết:
A = \(\sqrt{20+1}\)+ \(\sqrt{40+2}\)+\(\sqrt{60+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{5+2\sqrt{5}+1}}=\sqrt{\sqrt{\left(\sqrt{5}+1\right)^2}}=\sqrt{\sqrt{5}+1}< \sqrt{\sqrt{6}+1}\)
Ta sẽ chứng minh 1 bđt sau:
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
\(\Rightarrow a+2\sqrt{ab}+b\ge a+b\)
\(\Rightarrow a+2\sqrt{ab}+b-a-b\ge0\)
\(\Rightarrow2\sqrt{ab}\ge0\) *đúng*
Dấu "=" xảy ra khi: \(ab=0\)
Trở lại bài toán,vì không có thừa số nào bằng 0,nên ta dễ dàng có: \(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)
Hay \(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}=\left(\sqrt{1}+\sqrt{20}\right)+\left(\sqrt{40}+\sqrt{2}\right)+\left(\sqrt{60}+\sqrt{3}\right)>\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}=A\)
\(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{6+2\sqrt{5}}}=\sqrt{\sqrt{\left(\sqrt{5}+1\right)^2}}=\sqrt{\sqrt{5}+1}\)
Vì \(\sqrt{\sqrt{5}+1}< \sqrt{\sqrt{6}+1}\Rightarrow\sqrt{\sqrt{6+\sqrt{20}}}< \sqrt{1+\sqrt{6}}\)
B đâu rồi ? có chắc A sao mà so sánh được