K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

\(a.D=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\left(a>0\right)\)

\(b.D=2\Leftrightarrow a-\sqrt{a}-2=0\Leftrightarrow\left(\sqrt{a}+1\right)\left(\sqrt{a}-2\right)=0\Leftrightarrow a=4\left(TM\right)\)

\(c.D=a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right)>0\left(a>1\right)\)\(\Rightarrow D=\left|D\right|\)

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Lời giải:
Đặt \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{2004}}\)

Xét số hạng tổng quát: \(\frac{1}{\sqrt{n}}\) ta có:

\(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}> \frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2(\sqrt{n+1}-\sqrt{n})}{(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}=2(\sqrt{n+1}-\sqrt{n})\)

Do đó:

\(\frac{1}{\sqrt{1}}> 2(\sqrt{2}-\sqrt{1})\)

\(\frac{1}{\sqrt{2}}> 2(\sqrt{3}-\sqrt{2})\)

\(\frac{1}{\sqrt{3}}> 2(\sqrt{4}-\sqrt{3})\)

............

\(\frac{1}{\sqrt{2004}}> 2(\sqrt{2005}-\sqrt{2004})\)

Cộng theo vế:
$A>2(\sqrt{2005}-1)>86$

Vậy..........

28 tháng 8 2017

a) \(\sqrt{2004}-\sqrt{2003}=\frac{1}{\sqrt{2004}+\sqrt{2003}}>\frac{1}{\sqrt{2006}+\sqrt{2005}}=\sqrt{2006}-\sqrt{2005}\)

b) Tương tự.

23 tháng 8 2015

Ghi nhầm 

\(\sqrt{3}+1<\sqrt{4}+1=3\)

Vậy 3 > \(\sqrt{3}+1\)