K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2019

Biến đổi tương đương thôi!

\(\frac{x^2-2x+2004}{x^2}\ge\frac{2003}{2004}\)

\(\Leftrightarrow2004x^2+2.2004.x+2004^2\ge2003x^2\)

\(\Leftrightarrow x^2+2.2004.x+2004^2\ge0\)

\(\Leftrightarrow\left(x+2004\right)^2\ge0\)(Luôn đúng)

5 tháng 1 2019

\(\dfrac{x^2-2x+2004}{x^2}=\dfrac{\dfrac{2003}{2004}x^2+\dfrac{1}{2004}x^2-2x+2004}{x^2}=\dfrac{2003}{2004}+\dfrac{\dfrac{1}{2004}\left(x^2-2.2004+2004^2\right)}{x^2}=\dfrac{2003}{2004}+\dfrac{\dfrac{1}{2004}\left(x-2004\right)^2}{x^2}\ge\dfrac{2003}{2004}\)

\("="\Leftrightarrow x=2004\)

23 tháng 2 2020

Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)

=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)

=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)

=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)

=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)

=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)

=> \(x^2-1=0\)

=> \(x^2=1\)

=> \(x=\pm1\)

Vậy phương trình có 2 nghiệm là x = 1, x = -1 .

24 tháng 2 2020

Thanks bn

22 tháng 8 2017

c) 22/5 + 51/9 + 11/4 + 3/5 + 1/3 + 1/4
= 22/5 +3/5 +51/9 + 1/3 +11/4+1/4
= (22/5 +3/5) +(51/9 + 3/9) +(11/4+1/4)
= 25/5 +54/9 +12/4
= 5 +6 +3
= 14
d) (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15) 
= (5/30 + 3/30 +2/30 ) :(5/30 +3/30 -2/30)
= 10/30 : 6/30
= 1/3 : 1/5
= 5/3

6 tháng 7 2019

a) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

\(\Leftrightarrow x+2005=0\)

\(\Leftrightarrow x=-2005\)

b) Sửa đề :

\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)

\(\Leftrightarrow x=300\)

c) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)

\(\Leftrightarrow\frac{2-x}{2002}+1=\frac{1-x}{2003}+1-\frac{x}{2004}+1\)

\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\)

\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\)

\(\Leftrightarrow x=2004\)

Vậy....

Bài làm

\(\frac{x+2}{2005}+\frac{x+3}{2004}+\frac{x+4}{2003}+3=0\)

\(\Leftrightarrow\left(\frac{x+2}{2005}+1\right)+\left(\frac{x+3}{2004}+1\right)+\left(\frac{x+4}{2003}+1\right)=0\)

\(\Leftrightarrow\left(\frac{x+2+2005}{2005}\right)+\left(\frac{x+3+2004}{2004}\right)+\left(\frac{x+4+2003}{2003}\right)=0\)

\(\Leftrightarrow\frac{x+2007}{2005}+\frac{x+2007}{2004}+\frac{x+2007}{2003}=0\)

\(\Leftrightarrow\left(x+2007\right).\frac{1}{2005}+\left(x+2007\right).\frac{1}{2004}+\left(x+2007\right).\frac{1}{2003}=0\)

\(\Leftrightarrow\left(x+2007\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2007=\frac{0}{\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}}\)

\(\Leftrightarrow x+2007=0\)

\(\Leftrightarrow x=-2007\)

Vậy phương trình trên có tập nghiệm S = { -2007 }

# Học tốt #

2 tháng 1 2020

\(\frac{x+2}{2005}+\frac{x+3}{2004}+\frac{x+4}{2003}+3=0\)

\(\Leftrightarrow\left(\frac{x+2}{2005}+1\right)+\left(\frac{x+3}{2004}+1\right)+\left(\frac{x+4}{2003}+1\right)=0\)

\(\Leftrightarrow\frac{x+2007}{2005}+\frac{x+2007}{2004}+\frac{x+2007}{2003}=0\)

\(\Leftrightarrow\left(x+2007\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)=0\)(1)

Vì \(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}>0\)(2)

Từ (1), (2) \(\Rightarrow x+2017=0\)\(\Leftrightarrow x=-2017\)

Vậy \(x=-2017\)

25 tháng 5 2016

\(\frac{\sqrt{x-2002}}{x-2002}-\frac{1}{x-2002}+\frac{\sqrt{y-2003}}{y-2003}-\frac{1}{y-2003}+\frac{\sqrt{z-2004}}{z-2004}-\frac{1}{z-2004}=\frac{3}{4}\)

\(1-\frac{1}{x-2002}+1-\frac{1}{y-2003}+1-\frac{1}{z-2004}=\frac{3}{4}\)

\(3-\frac{1}{x-2002}-\frac{1}{y-2003}-\frac{1}{z-2004}=\frac{3}{4}\)

\(\frac{1}{x-2002}+\frac{1}{y-2003}+\frac{1}{z-2004}=3-\frac{3}{4}=\frac{9}{4}\)

=> không có giá trị x,y,z thỏa mãn đề