K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

A=[2(x^2-8x+22)-1]/(x^2-8x+22)

A=2-1/[(x-4)^2+6]

A nho nhat khi (x-4)^2=0=> x=4

min(A)=2-1/6

22 tháng 12 2017

\(A=\dfrac{3x^2+9x+17}{3x^2+9x+7}=1+\dfrac{10}{3x^2+9x+7}=1+\dfrac{10}{3\left(x^2+2.x.\dfrac{9}{2}+\dfrac{81}{4}\right)-\dfrac{215}{4}}\\ =1+\dfrac{10}{3\left(x+\dfrac{9}{2}\right)^2-\dfrac{215}{4}}\le\dfrac{35}{43}\)

Câu khác giải TT

25 tháng 3 2020

1.\(A=\frac{2x^2-16x+41}{x^2-8x+22}\) \(=\frac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\frac{3}{\left(x-4\right)^2+6}\ge\frac{1}{2}\)

Dấu '' = '' xảy ra khi x = 4.

Vậy MinA= \(\frac{1}{2}\) tại x = 4.

25 tháng 3 2020

b. Câu hỏi của bảo ngọc - Toán lớp 8 | Học trực tuyến

17 tháng 3 2018

\(A=\dfrac{3x^2-6x+17}{x^2-2x+5}\)

= \(\dfrac{3x^2-6x+15+2}{x^2-2x+5}\)

=\(\dfrac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}\)

= \(\dfrac{3\cdot\left(x^2-2x+5\right)}{x^2-2x+5}+\dfrac{2}{x^2-2x+5}\)

= \(3+\dfrac{2}{x^2-2x+5}\)

= \(3+\dfrac{2}{x^2-2x+1+4}\)

= \(3+\dfrac{2}{\left(x-1\right)^2+4}\)

vì (x-1)2 ≥ 0 ∀ x

⇔ (x-1)2 +4 ≥ 4

\(\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{1}{2}\)

\(3+\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{7}{2}\)

⇔ A \(\le\dfrac{7}{2}\)

⇔ Min A =\(\dfrac{7}{2}\)

khi x-1=0

⇔ x=1

vậy ....

17 tháng 3 2018

Ta có:\(B=\dfrac{2x^2-16x+41}{x^2-8x+22}\)

\(B=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)

\(B=2-\dfrac{3}{x^2-8x+16+6}\)

\(B=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{5}{2}\)

\(\Rightarrow MINB=\dfrac{5}{2}\Leftrightarrow x=4\)

6 tháng 8 2021

a, \(5x\left(x-1\right)+\left(x+17\right)=0\)

\(\Leftrightarrow5x^2-5x+x+17=0\Leftrightarrow5x^2-4x+17=0\)

\(\Leftrightarrow5\left(x^2-\frac{4}{5}x\right)+17=0\Leftrightarrow5\left(x^2-2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}\right)+17=0\)

\(\Leftrightarrow5\left(x-\frac{2}{5}\right)^2-\frac{4}{5}+17=0\Leftrightarrow5\left(x-\frac{2}{5}\right)^2+81\ge81>0\)

Vậy pt vô nghiệm 

b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)

\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)

\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\Leftrightarrow x.2x=0\Leftrightarrow x=0\)

c, \(2x^2-9x+7=0\Leftrightarrow2x^2-7x-2x+7=0\)

\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\Leftrightarrow\left(x-1\right)\left(2x-7\right)=0\Leftrightarrow x=1;x=\frac{7}{2}\)

6 tháng 8 2021

Trả lời:

a, \(5x\left(x-1\right)+\left(x+17\right)=0\)

\(\Leftrightarrow5x^2-5x+x+17=0\)

\(\Leftrightarrow5x^2-4x+17=0\)

\(\Leftrightarrow5\left(x^2-\frac{4}{5}x+\frac{17}{5}\right)=0\)

\(\Leftrightarrow x^2-\frac{4}{5}x+\frac{17}{5}=0\)

\(\Leftrightarrow x^2-2.x.\frac{2}{5}+\frac{4}{25}+\frac{81}{25}=0\)

\(\Leftrightarrow\left(x-\frac{2}{5}\right)^2+\frac{81}{25}=0\)

Vì \(\left(x-\frac{2}{5}\right)^2+\frac{81}{25}\ge\frac{81}{25}>0\forall x\)

nên pt vô nghiệm 

b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)

\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)

\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\)

\(\Leftrightarrow3x.\left(-9\right).2x=0\)

\(\Leftrightarrow-54x^2=0\)

\(\Leftrightarrow x^2=0\)

\(\Leftrightarrow x=0\)

Vậy x = 0 là nghiệm của pt.

c, \(7-9x+2x^2=0\)

\(\Leftrightarrow2x^2-7x-2x+7=0\)

\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=1\end{cases}}}\)

Vậy x = 7/2; x = 1 là nghiệm của pt.

d, trùng ý c

31 tháng 8 2015

Rút gọn hết ta được :

a/ 41x - 17 = -21

=> 41x = -4 => x = 4/41

b/ 34x - 17 = 0 

=> 34x = 17

=> x = 17/34 = 1/2

c/ 19x + 56 = 52 

=> 19x = -4

=> x = -4/19

d/ 20x2 - 16x - 34 = 10x2 + 3x - 34

=> 10x2 - 19x = 0

=> x(10x - 19) = 0

=> x = 0 

hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10

Vậy x = 0 ; x = 19/10

2 tháng 1 2016

Rút gọn hết ta được :

a/ 41x - 17 = -21

=> 41x = -4 => x = 4/41

b/ 34x - 17 = 0

=> 34x = 17

=> x = 17/34 = 1/2

c/ 19x + 56 = 52

=> 19x = -4

=> x = -4/19

d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34

=> 10x 2 - 19x = 0

=> x(10x - 19) = 0

=> x = 0 hoặc 10x - 19 = 0

=> 10x = 19

=> x = 19/10

Vậy x = 0 ; x = 19/10 

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Bài 1:

$A=(9x^2-5x)+(5y^2+3y)$

$=[(3x)^2-2.3x.\frac{5}{6}+(\frac{5}{6})^2]+5(y^2+\frac{3}{5}y+\frac{3^2}{10^2})-\frac{103}{90}$

$=(3x-\frac{5}{6})^2+5(y+\frac{3}{10})^2-\frac{103}{90}$

$\geq \frac{-103}{90}$

Vậy $A_{\min}=\frac{-103}{90}$. Giá trị này đạt tại $3x-\frac{5}{6}=y+\frac{3}{10}=0$

$\Leftrightarrow (x,y)=(\frac{5}{18}, \frac{-3}{10})$

 

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Bài 2:

a. 

$-A=4x^2+5y^2-8xy-10y-12$

$=(4x^2-8xy+4y^2)+(y^2-10y+25)-37$

$=(2x-2y)^2+(y-5)^2-37\geq -37$

$\Rightarrow A\leq 37$

Vậy $A_{\max}=37$. Giá trị này đạt tại $2x-2y=y-5=0$

$\Leftrightarrow x=y=5$

b.

$-B=3x^2+16y^2+8xy+5x-2$

$=(x^2+16y^2+8xy)+2(x^2+\frac{5}{2}x+\frac{5^2}{4^2})-\frac{41}{8}$

$=(x+4y)^2+2(x+\frac{5}{4})^2-\frac{41}{8}$

$\geq \frac{-41}{8}$

$\Rightarrow B\leq \frac{41}{8}$
Vậy $B_{\max}=\frac{41}{8}$. Giá trị này đạt tại $x+4y=x+\frac{5}{4}=0$

$\Leftrightarrow x=\frac{-5}{4}; y=\frac{5}{16}$

17 tháng 12 2023

Bài 1

a) 5x²y - 20xy²

= 5xy(x - 4y)

b) 1 - 8x + 16x² - y²

= (1 - 8x + 16x²) - y²

= (1 - 4x)² - y²

= (1 - 4x - y)(1 - 4x + y)

c) 4x - 4 - x²

= -(x² - 4x + 4)

= -(x - 2)²

d) x³ - 2x² + x - xy²

= x(x² - 2x + 1 - y²)

= x[(x² - 2x+ 1) - y²]

= x[(x - 1)² - y²]

= x(x - 1 - y)(x - 1 + y)

= x(x - y - 1)(x + y - 1)

e) 27 - 3x²

= 3(9 - x²)

= 3(3 - x)(3 + x)

f) 2x² + 4x + 2 - 2y²

= 2(x² + 2x + 1 - y²)

= 2[(x² + 2x + 1) - y²]

= 2[(x + 1)² - y²]

= 2(x + 1 - y)(x + 1 + y)

= 2(x - y + 1)(x + y + 1)

17 tháng 12 2023

Bài 2:

a: \(x^2\left(x-2023\right)+x-2023=0\)

=>\(\left(x-2023\right)\left(x^2+1\right)=0\)

mà \(x^2+1>=1>0\forall x\)

nên x-2023=0

=>x=2023

b: 

ĐKXĐ: x<>0

\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)

=>\(-x\left(x-4\right)+2x^2-4x-9=0\)

=>\(-x^2+4x+2x^2-4x-9=0\)

=>\(x^2-9=0\)

=>(x-3)(x+3)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

c: \(x^2+2x-3x-6=0\)

=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)

=>\(x\left(x+2\right)-3\left(x+2\right)=0\)

=>(x+2)(x-3)=0

=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

d: 3x(x-10)-2x+20=0

=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)

=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)

=>\(\left(x-10\right)\left(3x-2\right)=0\)

=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)

Câu 1:

a: \(5x^2y-20xy^2\)

\(=5xy\cdot x-5xy\cdot4y\)

\(=5xy\left(x-4y\right)\)

b: \(1-8x+16x^2-y^2\)

\(=\left(16x^2-8x+1\right)-y^2\)

\(=\left(4x-1\right)^2-y^2\)

\(=\left(4x-1-y\right)\left(4x-1+y\right)\)

c: \(4x-4-x^2\)

\(=-\left(x^2-4x+4\right)\)

\(=-\left(x-2\right)^2\)

d: \(x^3-2x^2+x-xy^2\)

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)

\(=x\left[\left(x-1\right)^2-y^2\right]\)

\(=x\left(x-1-y\right)\left(x-1+y\right)\)

e: \(27-3x^2\)

\(=3\left(9-x^2\right)\)

\(=3\left(3-x\right)\left(3+x\right)\)

f: \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x+1+y\right)\left(x+1-y\right)\)

a: =x^4-3x^5+4x^8

b: =2x^3+2x^2+4x

c: =4x^2+8x-5

d: =2x+3x^2+7x^4

21 tháng 7 2018

a) ( 2x - 3 ) - ( x - 5 ) = ( x + 7 ) - ( x + 2 ) 

<=> 2x - 3 - x + 5 = x + 7 - x - 2

<=> x = 3

b)(7x-5)-(6x+4)=(2x+3)-(2x+1)

<=> 7x - 5 - 6x - 4 = 2x + 3 - 2x - 1

<=> x = 11

c)(9x-3)-(8x+5)=(3x+2)

<=> 9x - 3 - 8x - 5 = 3x + 2

<=> -2x = 10

<=> x = -5

d)(x+7)-(2x+3)=(3x+5)-(2x+4)

<=> x + 7 - 2x - 3 = 3x + 5 - 2x - 4

<=> -2x = -3

<=> x = 3/2

ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠᅠ ᅠ