Cho cac so thuc a,b,c thoa man a^2 + b^2 + c^2 =3 va a + b + c+ ab + bc + ca = 6 Tinh gia tri cua bieu thuc A = (a^30 + b^4 + c^1975) / (a^30 + b^4 +c^2019)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 3 so a,b,c khac 0 thoa man ab/a+b=bc/b+c=ca/c+a
Tinh gia tri cua bieu thuc M=ab+bc+ca/a^2+b^2+c^2
Thêm đk \(a,b,c\ne0\)
Ta có: \(\frac{ab}{a+b}=\frac{1}{3}\Rightarrow\frac{a+b}{ab}=3\)
\(\frac{bc}{b+c}=\frac{1}{4}\Rightarrow\frac{bc}{b+c}=4\)
\(\frac{ca}{c+a}=\frac{1}{5}\Rightarrow\frac{c+a}{ca}=5\)
\(\Rightarrow\frac{a+b}{ab}+\frac{b+c}{bc}+\frac{c+a}{ca}=12\)
\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}=12\)
\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=12\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)
Ta có:
a + b = 7a - 7 b
=> a - 7a = -7b - b
=> -6a = -8b
=> 6a = 8b
\(\Rightarrow\frac{a}{b}=\frac{4}{3}\)
\(\Rightarrow\frac{a}{4}=\frac{b}{3}\)
Đặt \(\frac{a}{4}=\frac{b}{3}=k\) ( \(k\inℝ\) )
=> a = 4k và b = 3k
Thay a = 4k và b = 3k vào 7ab = 24(a+b)
=> ta có: 7.4k.3k=24.(4k+3k)
=> 84k2 = 168k
=> 84k = 168 ( chia cả 2 vế cho k )
=> k = 2
=> a = 8 và b = 6
Giá trị của biểu thức P = 82 + 62 = 100
Vậy: P = 100
Ghép cặp các số hạng lại thôi
\(P=d\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(c+d\right)=67.30=2010\)