Biết 7/1x4+ 7/4x7+ 7/7x10+ ⋯ + 7/ 37x40= m/n, trong đó m, n là các số tự nhiên và phân số m/n tối giản.
Tính S = m + n.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{7}{1.9}+\dfrac{7}{9.17}+\dfrac{7}{17.25}+...+\dfrac{7}{81.89}\)
\(\dfrac{8}{7}A=\dfrac{8}{1.9}+\dfrac{8}{9.17}+\dfrac{8}{17.25}+...+\dfrac{8}{81.89}\)
\(\dfrac{8}{7}A=1-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{25}+...+\dfrac{1}{81}-\dfrac{1}{89}\)
\(\dfrac{8}{7}A=1-\dfrac{1}{89}=\dfrac{88}{89}\Rightarrow A=\dfrac{88}{89}:\dfrac{8}{7}=\dfrac{77}{89}\)
\(B=\dfrac{5^2}{1.4}+\dfrac{3^2}{4.7}+\dfrac{3^2}{7.10}+...+\dfrac{3^2}{37.40}\)
\(B=\dfrac{25}{1.4}+\dfrac{9}{4.7}+\dfrac{9}{7.10}+...+\dfrac{9}{37.40}\)
\(\dfrac{1}{3}B=\dfrac{25}{12}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{37.40}\)
\(\dfrac{1}{3}B=\dfrac{25}{12}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{37}-\dfrac{1}{40}\)
\(\dfrac{1}{3}B=\dfrac{25}{12}+\dfrac{1}{4}-\dfrac{1}{40}=\dfrac{277}{120}\Rightarrow B=\dfrac{277}{120}:\dfrac{1}{3}=\dfrac{277}{40}\)
\(A=\dfrac{7}{1.9}+\dfrac{7}{9.17}+\dfrac{7}{17.25}+...+\dfrac{7}{81.89}\)
\(=7\left(\dfrac{8}{1.9}+\dfrac{8}{9.17}+\dfrac{8}{17.25}+...+\dfrac{8}{81.89}\right)\)
\(=7\left(1-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{25}+\dfrac{1}{25}+...+\dfrac{1}{81}-\dfrac{1}{89}\right)\)
\(=7.\left(1-\dfrac{1}{89}\right)=7.\dfrac{88}{89}=\dfrac{616}{89}\)
\(\dfrac{1}{cosx}+\dfrac{sinx}{cosx}=\dfrac{1+sinx}{cosx}=\dfrac{\left(sin\dfrac{x}{2}+cos\dfrac{x}{2}\right)^2}{\left(cos\dfrac{x}{2}-sin\dfrac{x}{2}\right)\left(cos\dfrac{x}{2}+sin\dfrac{x}{2}\right)}\)
\(=\dfrac{cos\dfrac{x}{2}+sin\dfrac{x}{2}}{cos\dfrac{x}{2}-sin\dfrac{x}{2}}=\dfrac{1+tan\dfrac{x}{2}}{1-tan\dfrac{x}{2}}=\dfrac{22}{7}\)
\(\Rightarrow tan\dfrac{x}{2}=\dfrac{15}{29}\)
\(\dfrac{1}{sinx}+\dfrac{cosx}{sinx}=\dfrac{1+cosx}{sinx}=\dfrac{1+2cos^2\dfrac{x}{2}-1}{2sin\dfrac{x}{2}cos\dfrac{x}{2}}=\dfrac{cos\dfrac{x}{2}}{sin\dfrac{x}{2}}=\dfrac{1}{tan\dfrac{x}{2}}=\dfrac{29}{15}\)
\(\Rightarrow m=29;n=15\)
\(A=\dfrac{1}{1\times4}+\dfrac{1}{4\times7}+...+\dfrac{1}{37\times40}\\ =\dfrac{1}{3}\times\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+...+\dfrac{3}{37\times40}\right)\\ =\dfrac{1}{3}\times\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{40}\right)\\ =\dfrac{1}{3}\times\left(1-\dfrac{1}{40}\right)\\ =\dfrac{1}{3}\times\dfrac{39}{40}\\ =\dfrac{13}{40}\)
Ta có \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=2\sqrt{2\left(a^2+ab+2bc+2ca\right)}\)
\(=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)
Tương tự \(\sqrt{8b^2+56}\le2a+3b+2c;\)\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)
Do vậy \(Q\ge\frac{11a+11b+12c}{3a+2b+2c+2a+3b+2c+\frac{a+b+4c}{2}}=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a,b,c\right)=\left(1;1;\frac{3}{2}\right)\)
a) \(P=1957\)
b) \(S=19.\)
\(\dfrac{m}{n}=\dfrac{7}{1\cdot4}+\dfrac{7}{4\cdot7}+...+\dfrac{7}{37\cdot40}\)
\(=\dfrac{7}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{37\cdot40}\right)\)
\(=\dfrac{7}{3}\left(1-\dfrac{1}{40}\right)\)
\(=\dfrac{7}{3}\cdot\dfrac{39}{40}=\dfrac{91}{40}\)
\(\Leftrightarrow\left(m,n\right)=\left(91;40\right)\)
Suy ra: S=91+40=131