cho góc nhọn a biết cosa=2/3 tính sina
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cos a-\sin a=\dfrac{1}{5}\\ \Leftrightarrow\left(\cos a-\sin a\right)^2=\dfrac{1}{25}\\ \Leftrightarrow1-2\sin a\cos a=\dfrac{1}{25}\\ \Leftrightarrow2\sin a\cos a=\dfrac{24}{25}\)
Mà \(\cos a=\dfrac{1}{5}+\sin a\)
\(\Leftrightarrow2\sin a\left(\dfrac{1}{5}+\sin a\right)=\dfrac{24}{25}\\ \Leftrightarrow\dfrac{2}{5}\sin a+2\sin^2a-\dfrac{24}{25}=0\\ \Leftrightarrow\left[{}\begin{matrix}\sin a=\dfrac{3}{5}\\\sin a=-\dfrac{4}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\cos a=\dfrac{4}{5}\\\cos a=-\dfrac{3}{5}\end{matrix}\right.\\ \Leftrightarrow\cot a=\dfrac{4}{5}\cdot\dfrac{5}{3}=\dfrac{4}{3}\)
\(\dfrac{\left(cosa-sina\right)^2-\left(cosa+sina\right)^2}{cosa\cdot sina}\)
\(=\dfrac{\left(cosa-sina-cosa-sina\right)\left(cosa-sina+cosa+sina\right)}{cosa\cdot sina}\)
\(=\dfrac{-2\cdot sina\cdot2\cdot cosa}{cosa\cdot sina}=-4\)
Ta có: \(sin^2\alpha+cos^2\alpha=1\Rightarrow sin^2\alpha+\left(sin\alpha+\dfrac{1}{5}\right)^2=1\)
\(\Rightarrow25sin^2\alpha+5sin\alpha-12=0\\\Rightarrow\left(5sin\alpha-3\right)\left(5sin\alpha+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}sin\alpha=\dfrac{3}{5}\Rightarrow cos\alpha=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\Rightarrow cot\alpha=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\\sin\alpha=-\dfrac{4}{5}\left(loại\right)\end{matrix}\right. \)
Bài 2:
\(\cos\alpha=\sqrt{1-\dfrac{4}{9}}=\dfrac{\sqrt{5}}{3}\)
\(\tan\alpha=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)
\(\cot\alpha=\dfrac{\sqrt{5}}{2}\)
a) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2a=1-\sin^2\alpha=1-\left(\frac{\sqrt{3}}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow\cos\alpha=\frac{1}{2}\)(do \(\cos\alpha>0\))
b) \(Q=\sin^2\alpha+\cot^2\alpha.\sin^2\alpha=\sin^2\alpha\left(1+\cot^2\alpha\right)\)\(=\sin^2\alpha\left(1+\frac{\cos^2\alpha}{\sin^2\alpha}\right)=\sin^2\alpha.\frac{\sin^2\alpha+\cos^2\alpha}{\sin^2\alpha}=1\)
a) \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}\)
Ta có công thức cos2a+sin2a=1⇔\(\left(\dfrac{2}{3}\right)^2+sin^2a=1\Leftrightarrow\dfrac{4}{9}+sin^2a=1\Leftrightarrow sin^2a=\dfrac{5}{9}\Leftrightarrow sina=\dfrac{\sqrt{5}}{3}\)