Cho tam giác ABC vuông tại A . Tia phân giác của góc B cắt AC tại E. Trên cạnh BC lấy D sao cho BD=BA. a) chứng minh tam giac BAE= tam giac BDE c) CB vuông góc với DE c) gọi giao điểm của DE và AB là F. Gọi I là trung điểm của đoạn thằng FC. Chứng minh B,E,I thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4) a.Ta có:
\(BA=BE\)
\(ABD=DBE\rightarrow\Delta ABD=\Delta EBDchungBD\)
b) Từ câu a \(\rightarrow BED=BAD=90^o\)
\(\rightarrow DE\text{⊥}BC\)
c) Ta có :
\(BKD=ADK=ACB+DEC=90^o\)
\(BKD=ACB\)
\(\text{Δ B D K = Δ B D C ( g . c . g )}\)
\(BK=BC\)
5)
Ta có:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Mà \(8< 9\Rightarrow2^{300}< 3^{200}\)
Bài 5:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\\ 3^{200}=\left(3^2\right)^{100}=9^{100}\\ Vì:8< 9\Rightarrow8^{100}< 9^{100}\\ \Rightarrow2^{300}< 3^{200}\)
a.Ta có:
⎧⎪⎨⎪⎩BA=BEˆABD=ˆDBEchungBD→ΔABD=ΔEBD(c.g.c){BA=BEABD^=DBE^chungBD→ΔABD=ΔEBD(c.g.c)
b.Từ câu a→ˆBED=ˆBAD=90o→BED^=BAD^=90o
→DE⊥BC→DE⊥BC
c.Ta có:
ˆBKD+ˆADK=ˆACB+ˆDEC=90oBKD^+ADK^=ACB^+DEC^=90o
→ˆBKD=ˆACB→BKD^=ACB^
→ΔBDK=ΔBDC(g.c.g)→ΔBDK=ΔBDC(g.c.g)
→BK=BC→BK=BC
a, xét tam giác BAE và tam giác BDE có : BE chung
góc ABE = góc DBE do BE là phân giác của góc ABC (gt)
AB = BD (gt)
=> tam giác BAE = tam giác BDE (c-g-c)
b, tam giác BAE = tam giác BDE (câu a)
=> góc BAE = góc BDE (đn)
mà óc BAE = 90 do tam giác ABC vuông tại A (gt)
=> góc BDE = 90
=> ED _|_ BC (đn)
c, tam giác BAE = tam giác BDE (Câu a)
=> AE = DE (đn)
d, gọi BE cắt CI tại O
AB = BD (gt)
AI = DC (gt)
AB + AI = BI
BD + DC = BC
=> BI = BC
xét tam giác IOB và tam giác COB có : OB chung
góc IBO = góc CBO do BO là phân giác của góc IBC (gt)
=> tam giác IOB = tam giác COB (c-g-c)
=> góc IOB = góc COB (đn)
mà góc IOB + góc COB = 180 (kb)
=> góc IOB = 180 : 2 = 90
=> BO _|_ CI (đn)
CA _|_ AB do góc BAC = 90
xét tam giác IBC
=> ID _|_ BC (tc)
mà ED _|_ BC (câu b)
=> I; E; D thẳng hàng
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên DA=DE
Ta có: ΔABD=ΔEBD
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BC
a: Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
DO đo: ΔBAE=ΔBDE
b: ΔBAE=ΔBDE
nên góc BDE=90 độ
=>DE vuông góc với BC
c: Xét ΔAEF vuông tại A và ΔDEC vuông tại E có
EA=ED
góc AEF=góc DEC
Do đó: ΔAEF=ΔDEC
=>EF=EC và AF=DC
=>BF=BC
=>B nằm trên đường trung trực của FC(1)
EF=EC
nên E nằm trên đường trung trực của FC(2)
IF=IC
nên I nằm trên đường trung trực của FC(3)
Từ (1), (2) và (3) suy ra B,E,I thẳng hàng