K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

Vẽ nháp bằng tay, hình không đẹp cho lắm :v Bài viết có hơi lỗi.

Bài toán phụ : Chứng minh tam giác vuông có 1 góc 60 độ thì cạnh góc vuông nhỏ hơn sẽ bằng 1 nửa cạnh huyền.

Tam giác MNP vuông tại M có góc N là 60 độ.

Trên tia đối tia MN lấy điểm Q sao cho MQ=MN

Tam giác NPQ có PM vừa là trung tuyến vừa là đường cao nên cân tại P, mà lại có 1 góc 60 độ nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều), từ đó suy ra NQ = NP, mà NQ= 2MN nên MN = \(\frac{1}{2}\)NP, bài toán được chứng minh.

Tương tự với bài toán của chúng ta :

\(\Delta ABC\)vuông tại Acó \(\widehat{B}=60^o\) \(\Rightarrow AB=\frac{1}{2}BC\)

\(\Delta ABH\)vuông tại H có \(\widehat{B}=60^o\) \(\Rightarrow HB=\frac{1}{2}AB\)

\(\Rightarrow HB=\frac{1}{4}BC\)

Trước hết \(\Delta ABH\) vuông tại H có \(\widehat{B}=60^o\)

 nên \(\widehat{HAB}=90^o-60^o=30^o\)Mà \(\widehat{DAH}+\widehat{HAB}=\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{DAH}=60^o\)

\(\Delta DAH\)cân tại A ( AD = AH ), có góc DAH là 60o nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều )

Như vậy AI là đường cao đồng thời cũng là phân giác góc DAH

\(\Rightarrow\widehat{IAH}=\frac{1}{2}\widehat{DAH}=\frac{60^o}{2}=30^o\)

\(\Rightarrow\widehat{KAB}=\widehat{IAH}+\widehat{HAB}=30^o+30^o=60^o\)

\(\Delta KAB\)có \(\widehat{KAB}=\widehat{KBA}=60^o\) nên là tam giác đều

\(\Rightarrow KB=AB\)

Mà \(HB=\frac{1}{2}AB\Rightarrow HB=\frac{1}{2}KB\), hay H là trung điểm của KB.

Vậy ....

26 tháng 12 2016

dung roi

2 tháng 12 2021

a) Xét tam giác AHB có: ^AHB = 90o (AH vuông góc với BC). 

=> Tam giác AHB vuông tại H.

=> ^B + ^HAB = 90o.

Mà ^B = 60o (gt).

=> ^HAB = 30o.

b) Xét tam giác HAD có: AD = AH (gt).

=> Tam giác HAD cân tại A.

Mà AI là trung tuyến (I là trung điểm của HD).

=> AI là phân giác ^HAD.

=> ^IAH = ^IAD.

c) Xét tam giác HAK và tam giác DAK có:

+ AH = AD (gt).

+ ^KAH = ^KAD (do ^IAH = ^IAD).

+ AK chung.

=> Tam giác HAK = Tam giác DAK (c - g - c).

=> ^AHK = ^ADK (2 góc tương ứng).

Mà ^AHK = 90(AH vuông góc với BC).

=> ^ADK= 90o.

=> AD vuông góc KD.

Mà AD vuông góc AB (do tam giác ABC vuông tại góc A).

=> AB // KD (Từ vuông góc đến //).

c)  Ta có: ^HAB + ^IAH + ^IAD = 90o (do tam giác ABC vuông tại góc A).

<=> ^HAB + 2^IAH = 90o.

Thay số: 30o + 2^IAH = 90o.

<=> ^IAH = 30o.

=> ^IAH = ^HAB = 30o.

Ta có: HA = HE (gt). => H là trung điểm của AE.

Xét tam giác AKE có:

+ HK là đường cao (AH vuông góc với HK).

+ HK là đường trung tuyến (H là trung điểm của AE).

=> Tam giác AKE cân tại K.

=> ^IAH = ^E (Tính chất tam giác cân).

Mà ^IAH = ^HAB (cmt).

=> ^E = ^HAB. => AB // KE (do 2 góc ở vị trí so le trong).

Mà AB // KD (cmt).

=> 3 điểm D, K, E thẳng hàng (đpcm).

6 tháng 11 2019

Bài này giải kiểu j vậy ???

30 tháng 12 2020

cho tam giác abc vuông tại A (AB<AC) ke Ah vuông với bc tại h trê cạnh ac lấy điểm d sao cho ad=ah gọi e là trung điểm của hd tia ae cắt bc tai f cm a) tam giác ahe= tam giác ade và ae vuông tại hd b) tam giác ahf = tam giác adf c) góc dfc= góc abc

27 tháng 10 2021

d

a: Xét ΔAHI và ΔADI có

AH=AD

AI chung

HI=DI

Do đó: ΔAHI=ΔADI

2 tháng 1 2022

ều còn nhiều câu mak bạn

 

13 tháng 3 2021

image

13 tháng 3 2021

image