K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

A = 4 + 42 + 43 + 44 + ... + 499 + 4100

A = ( 4 + 42 ) + ( 43 + 44 ) + ... + (499 + 4100)

A = ( 4 + 4) + 43(4 + 42 ) + .... + 499(4 + 42)

A = 20 + 43.20 + .... + 499.20

A = 20 ( 1 + 43 + .... + 499 )

A = 4.5.(1 + 43 + ... + 499 ) ⋮ 5 ( đpcm )

18 tháng 12 2018

\(A=4+4^2+4^3+4^4+...+4^{99}+4^{100}\)

\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)

\(A=4\left(4+1\right)+4^3\left(4+1\right)+...+4^{99}\left(4+1\right)\)

\(=5\left(4+4^3+...+4^{99}\right)\Rightarrow A⋮5\)

13 tháng 8 2016

\(A=4+4^2+4^3+...+4^{100}\)

\(A=\left(4+\text{ }4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)

\(A=\left(1+4\right).\left(4\right)+\left(1+4\right).\left(4^3\right)+...+\left(1+4\right).\left(4^{99}\right)\)

\(A=5.\left(4+4^3+4^5+...+4^{99}\right)\)

Vậy A chia hết cho 5

Các bạn nha!

29 tháng 11 2021

\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\\ \Rightarrow3B-B=3^2+3^3+...+3^{101}-3-3^2-3^3-...-3^{100}\\ \Rightarrow2B=3^{101}-3\\ \Rightarrow B=\dfrac{3^{101}-3}{2}\)

29 tháng 11 2021

B = 31 + 32 + 33 + .... + 399 + 3100

3B = 3(31 + 32 + 33 + ..... + 399 + 3100)

3B = 32 + 33 + 34 +...... + 3100 + 3101

3B - B = 2B = (32 + 33 + 34 + .... + 3100 + 3101) - ( 31 + 32 + 33 + .... + 3100)

2B = (32 - 32) + (33 - 33) +.....+ ( 3100 - 3100) + ( 3101 - 1)

2B = 0 + 0 + 0 + ..... +0 + 3101 - 1

2B = 3101 - 1

B = (3101 - 1)  : 2

3 tháng 1 2020

Ta có:

A = 4 + 4 + 43 + 44 + ... + 499 + 4100

A = (4 + 42) + (43 + 44) + ... + (499 + 4100)

A = 4(1 + 4) + 43(1 + 4) + ... + 499(1 + 4)

A = 4.5 + 43.5 + ... + 499.5

A = 5.(4 + 43 + ... + 499)

Vậy A chia hết cho 5

3 tháng 1 2020

\(A=4+4^2+4^3+...4^{99}+4^{100}\)

\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)

\(A=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{99}.\left(1+4\right)\)

\(A=4.5+4^3.5+..4^{99}.5\)

\(A=5.\left(4+4^3+...4^{99}\right)\)

\(\Rightarrow A⋮5\)

21 tháng 12 2022

`A=4+4^2+4^3+...+4^98 +4^99`

`A=(4+4^2+4^3)+...+(4^97 +4^98 +4^99)`

`A=4(1+4+4^2)+...+4^97 (1+4+4^2)`

`A=4.21+...+4^97 .21`

`A=21.(4+4^97)  \vdots 21`

   `=>Đpcm`

A=12.34.56...99100A=12.34.56...99100

A<23.45.67...100101⇒A<23.45.67...100101

A2<23.45.67...100101.12.34.56...99100⇒A2<23.45.67...100101.12.34.56...99100

A2<1101<1100=1102⇒A2<1101<1100=1102

A<

A=12.34.56...99100A=12.34.56...99100

A<23.45.67...100101⇒A<23.45.67...100101

A2<23.45.67...100101.12.34.56...99100⇒A2<23.45.67...100101.12.34.56...99100

A2<1101<1100=1102⇒A2<1101<1100=1102

A<

14 tháng 7 2017

\(A=4+4^2+4^3...+4^{99}+4^{100}\)

\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)

\(A=\left(4.1+4.4\right)+\left(4^3.1+4^3.4\right)+...+\left(4^{99}.1+4^{99}.4\right)\)

\(A=4.5+4^3.5+...+4^{99}.5\)

\(A=5.\left(4+4^3+...+4^{99}\right)⋮5\left(ĐPCM\right)\)

31 tháng 8 2018

\(A=4+4^2+4^3+...+4^{99}+4^{100}\)

\(A=4\cdot\left(1+4\right)+4^3\cdot\left(1+4\right)+...+4^{99}\cdot\left(1+4\right)\)

\(A=4\cdot5+4^3\cdot5+...+4^{99}\cdot5\)

\(A=5\cdot\left(4+4^3+...+4^{99}\right)⋮5\left(đpcm\right)\)