Tìm các số tự nhiên a,b biết a+2b =189 và UCLN {a,b}=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của phạm văn quyết tâm - Toán lớp 6 - Học toán với OnlineMath
Lời giải:
a.
Ta có: $ab=BCNN(a,b).ƯCLN(a,b)$
$\Rightarrow 1200=3.ƯCLN(a,b).ƯCLN(a,b)$
$\Rightarrow ƯCLN(a,b).ƯCLN(a,b)=400=20.20$
$\Rightarrow ƯCLN(a,b)=20$
Đặt $a=20x, b=20y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đđ:
$ab=20x.20y$
$\Rightarrow 1200=400xy\Rightarrow xy=3$
Kết hợp với $x,y$ nguyên tố cùng nhau $\Rightarrow (x,y)=(1,3), (3,1)$
$\Rightarrow (a,b)=(20, 60), (60,20)$
b. Đề không rõ ràng. Bạn viết lại nhé.
Vì \(\left(a,b\right)=30\) nên ta có: \(\hept{\begin{cases}a=30m\\b=30n\\\left(m,n\right)=1\end{cases}}\)
Mà \(a+b=360\)
\(\Rightarrow30m+30n=360\)
\(\Rightarrow30\left(m+n\right)=360\)
\(\Rightarrow m+n=12\)
Lại có: \(\left(m,n\right)=1\)
Ta có bảng sau:
m 1 11 5 7
n 11 1 7 5
a 30 330 150 210
b 330 30 210 150
Vậy \(\left(a;b\right)\in\left\{\left(30;330\right);\left(330;30\right);\left(150;210\right);\left(210;150\right)\right\}\).