Cho đẳng thức :
\(\frac{1}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tìm a , b , c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0
\(VP=\frac{ax+b}{x^2+1}+\frac{c}{x-1}=\frac{\left(ax+b\right)\left(x-1\right)+c\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)}=\frac{\left(a+c\right)x^2-\left(a-b\right)x+\left(c-b\right)}{\left(x^2+1\right)\left(x-1\right)}\)
VP =VT
=> a+c =0 =. a=-c
=> a-b=0 => a=b
và c-b =1 => -a-a=1 => a=-1/2
Vậy a=b = -1/2 ; c= 1/2
Doraemon chơi hay thật, ảnh đại diện là của còn tên thì Doraemon