Cho \(\Delta ABC\)có \(\widehat{A}=50^o\), AB = AC. Tính \(\widehat{B},\widehat{C}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác vuông ABC và tam giác vuông ADE có :
AB=AD
AC=AE
=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông )
Bài làm
a) Xét tam giác ABC,
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)( Định lí tổng ba góc của tam giác )
Hay 70o + 30o + \(\widehat{C}\)= 180o
=> \(\widehat{C}\) = 180o - 70o - 300
=> \(\widehat{C}\) = 80o
Vậy \(\widehat{C}=80^o\)
# Chúc bạn học tốt #
Kẻ phân giác AD (D thuộc BC)
\(\Rightarrow\widehat{B}=\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{A}}{2}\)
Xét hai tam giác ABC và DAC có:
\(\left\{{}\begin{matrix}\widehat{C}\text{ chung}\\\widehat{B}=\widehat{CAD}\end{matrix}\right.\) \(\Rightarrow\Delta ABC\sim\Delta DAC\left(g.g\right)\)
\(\Rightarrow\dfrac{AC}{DC}=\dfrac{BC}{AC}\Rightarrow DC=\dfrac{AC^2}{BC}=\dfrac{27}{4}\)
\(\Rightarrow BD=BC-DC=\dfrac{21}{4}\)
Áp dụng định lý phân giác:
\(\dfrac{BD}{AB}=\dfrac{DC}{AC}\Rightarrow AB=\dfrac{BD.AC}{DC}=7\)
\(1,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \text{Mà }\widehat{A}=\widehat{B}=\widehat{C}\\ \Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=\dfrac{180^0}{3}=60^0\\ 2,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \Rightarrow\widehat{B}+\widehat{C}=180^0-\widehat{A}=110^0\\ \text{Mà }\widehat{B}-\widehat{C}=10^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{B}=\left(110^0+10^0\right):2=60^0\\\widehat{C}=60^0-10^0=50^0\end{matrix}\right.\)
a)
=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o
100o + \(\widehat{B}+\widehat{C}\) = 180o
\(\widehat{B}+\widehat{C}\) = 180o - 100o
\(\widehat{B}+\widehat{C}\) = 80o
Góc B = (80o+50o):2 = 65o
=> \(\widehat{C}\) = 65o - 50o = 15o
Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o
b)
Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o
\(\widehat{3A}+\widehat{2C}\) = 180o - 80o
\(\widehat{3A}+\widehat{2C}\) = 100o
=> \(\widehat{A}\) = 100o:(3+2).3 = 60o
\(\widehat{C}\) = 100o - 60o = 40o
Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o
b) Nếu các bạn chưa học tam giác cân thì làm như sau: VìΔBCD = ΔCBE cmt ⇒CD = BE
= Xét ΔBOE,ΔCODcó: = BE = CD cmt = cmt ⇒ΔBOE = ΔCOD g − c − g ⇒OB= OC(hai cạnh tương ứng) ( ) ^ CDB ^ BEC ^ EDO ^ ODC ( ) ^ BEO ^ CDOHình bạn tự vẽ nha!
a) Vì \(\widehat{B}=\widehat{C}\left(gt\right)\)
Mà \(BD\) và \(CE\) là tia phân giác của \(\widehat{B}\) và \(\widehat{C}\) cắt nhau tại O.
=> \(\left\{{}\begin{matrix}\widehat{DBC}=\widehat{ECB}\\\widehat{DBE}=\widehat{ECD}\end{matrix}\right.\)
Xét 2 \(\Delta\) \(BCD\) và \(CBE\) có:
\(\widehat{BCD}=\widehat{CBE}\left(gt\right)\)
\(\widehat{DBC}=\widehat{ECB}\left(cmt\right)\)
Cạnh BC chung
=> \(\Delta BCD=\Delta CBE\left(g-c-g\right).\)
=> \(CD=BE\) (2 cạnh tương ứng)
b) Theo câu a) ta có \(\Delta BCD=\Delta CBE.\)
=> \(\widehat{ODC}=\widehat{OEB}\) (2 góc tương ứng)
Xét 2 \(\Delta\) \(OBE\) và \(OCD\) có:
\(\widehat{OEB}=\widehat{ODC}\left(cmt\right)\)
\(BE=CD\left(cmt\right)\)
\(\widehat{DBE}=\widehat{ECD}\left(cmt\right)\)
=> \(\Delta OBE=\Delta OCD\left(g-c-g\right).\)
=> \(OB=OC\) (2 cạnh tương ứng)
c) Xét 2 \(\Delta\) vuông \(OBK\) và \(OCH\) có:
\(\widehat{OKB}=\widehat{OHC}=90^0\left(gt\right)\)
\(OB=OC\left(cmt\right)\)
\(\widehat{DBE}=\widehat{ECD}\left(cmt\right)\)
=> \(\Delta OBK=\Delta OCH\) (cạnh huyền - góc nhọn)
=> \(OK=OH\) (2 cạnh tương ứng).
Chúc bạn học tốt!
Từ đề bài, tam giác ABC cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-50^0}{2}=65^0\)
Bài làm
Vì AB = AC ( giả thiết )
=> Tam giác ABC là tam giác cân tại A
=> B = C ( hai cạnh ở đáy )
Xét tam giác ABC cân tại A
Ta có: A + B + C = 180o ( định lí tổng ba góc của tam giác )
hay 50o+B+C=180o
=> B + C = 180o - 50o
=> B + C = 130o
Mà B = C
=> B = C = 130o/2=65o
Vậy B = C = 65o
# Chúc bạn học tốt #
=>