1) Thực hiện phép tính :
a) -(5x - 4)(2x+3)
b) ( x - y)( x mũ 2 + xy+ y mũ 2)
c) 7x( x - 4) - ( 7x +3)(2x mũ 2 - x+4)
2) Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến x:
a) x(3x +12) - ( 7x - 20) + x(2x - 3) - x( 2x +5)
b) 3( 2x-1) - 5( x-3) + 6( 3x - 4) - 19x
3) tìm x:
a) 3x( x - 2) - x( 1+3x) = 14
b) (2x - 1)( x + 5) - (2x +1)( x + 4,5)=3,5
c) 3x mũ 2 - 3x( x - 3) = 36
d) (3x + 1)(x - 1) + x( 4 - 3x )= 5
4/ Phân tích đa thức thành nhân tử:
a. 14xy - 21xy - 28xy
b. x( x + y) - 5x - 5y
c. 10x( x - y ) - 8( y - x )
d. x mũ 3 - x + 3x mũ 2 y + 3 xy mũ 2 + y mũ 3 - y
e. x mũ 2 + 7x - 8
f. 2x mũ 2 - 3x - 2
g. - 5x mũ 2 + 16x - 3
h. x mũ 2 - 2xy - 3y mũ 2
i. x mũ 2 - 2xy + y mũ 2 - z mũ 2
Giải hộ mình với ạ ....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: \(=7xy\left(2-3-4\right)=-35xy\)
b: \(=\left(x-5\right)\left(x+y\right)\)
c: \(=10x\left(x-y\right)+8\left(x-y\right)=2\left(x-y\right)\left(5x+4\right)\)
d: \(=\left(x+y\right)^3-\left(x+y\right)\)
=(x+y)(x+y+1)(x+y-1)
e: =x^2+8x-x-8
=(x+8)(x-1)
f: \(=2x^2-4x+x-2=\left(x-2\right)\left(2x+1\right)\)
g: =-5x^2+15x+x-3
=(x-3)(-5x+1)
h: =x^2-3xy+xy-3y^2
=x(x-3y)+y(x-3y)
=(x-3y)*(x+y)
Bài 3:
a: =>3x^2-6x-x-3x^2=14
=>-7x=14
=>x=-2
b: \(\Leftrightarrow2x^2+10x-x-5-2x^2-9x-x-4.5=3.5\)
=>-x-9,5=3,5
=>-x=12
=>x=-12
c: =>\(3x-3x^2+9x=36\)
=>-3x^2+12x-36=0
=>x^2-6x+12=0(loại)
d: \(\Leftrightarrow3x^2-3x+x-1+4x-3x^2=5\)
=>2x=6
=>x=3
\(A=\dfrac{\left(x+4-x\right)\left(x+4+x\right)}{2x+4}=\dfrac{4\left(2x+4\right)}{2x+4}=4\left(đpcm\right)\)
\(A=\dfrac{\left(x+4\right)^2-x^2}{2x+4}=\dfrac{\left(x+4-x\right)\left(x+4+x\right)}{2x+4}\)
\(=\dfrac{4\left(2x+4\right)}{2x+4}=4.\)
=> Giá trị của biểu thức trên không phụ thuộc vào x.
a: \(A=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{2\left(x-3\right)}{2-x}\)
\(=\dfrac{4+4x+x^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\cdot\dfrac{2-x}{2\left(x-3\right)}\)
\(=\dfrac{5x^2+4x+4-4+4x-x^2}{\left(2+x\right)}\cdot\dfrac{1}{2\left(x-3\right)}\)
\(=\dfrac{4x^2+8x}{x+2}\cdot\dfrac{1}{2\left(x-3\right)}=\dfrac{4x\left(x+2\right)}{2\left(x+2\right)}\cdot\dfrac{1}{x-3}=\dfrac{2x}{x-3}\)
b: |x-2|=2
=>x-2=2 hoặc x-2=-2
=>x=0(nhận) hoặc x=4(nhận)
Khi x=0 thì \(A=\dfrac{2\cdot0}{0-3}=\dfrac{-2}{3}\)
Khi x=4 thì \(A=\dfrac{2\cdot4}{4-3}=8\)
c: A>0
=>x/x-3>0
=>x>3 hoặc x<0
=>x>3
bạn chỉ cần nhân phá ngoặc ra rồi ghép các hạng tử có cùng biến là xong
(x+3)2-(4x+1)-2(x+2)
= x2+6x+9-4x-1-2x-4
= x2+(6x-4x-2x)+(9-1-4)
= x2+4
Bài 4:
a: \(=7xy\left(2-3-4\right)=-35xy\)
b: \(=\left(x-5\right)\left(x+y\right)\)
c: \(=10x\left(x-y\right)+8\left(x-y\right)=2\left(x-y\right)\left(5x+4\right)\)
d: \(=\left(x+y\right)^3-\left(x+y\right)\)
=(x+y)(x+y+1)(x+y-1)
e: =x^2+8x-x-8
=(x+8)(x-1)
f: \(=2x^2-4x+x-2=\left(x-2\right)\left(2x+1\right)\)
g: =-5x^2+15x+x-3
=(x-3)(-5x+1)
h: =x^2-3xy+xy-3y^2
=x(x-3y)+y(x-3y)
=(x-3y)*(x+y)