K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác EAFH có 

\(\widehat{EAF}=\widehat{AEH}=\widehat{AFH}=90^0\)

Do đó: EAFH là hình chữ nhật

26 tháng 9 2021

undefined

1: Xét tứ giác ADME co

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

Xét ΔABC có

DM//AC

nên DM/AC=BD/BA=BM/BC

=>D là trung điểm của BA

Xét ΔABC có ME//AB

nên ME/AB=CM/CB=CE/CA=1/2

=>E là trung điểm của AC

=>EM//BD và EM=BD

=>BMED là hình bình hành

Xét tứ giác DMCE có

DM//CE

DM=CE

Do đó: DMCE là hình bình hành

2: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

AD=AB/2=3cm

AE=AC/2=4cm

\(S_{ADME}=3\cdot4=12\left(cm^2\right)\)

3: ΔHAC vuông tại H

mà HE là trung tuyến

nên HE=AC/2=MD

Xét ΔABC có AD/AB=AE/AC

nên DE//BC

Xét tứ giác DHME có

DE//MH

MD=HE

Do đo: DHME là hình thang cân

30 tháng 5 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét tứ giác ADME, ta có:

∠ A= 90 0  (gt)

MD ⊥ AB (gt)

⇒  ∠ (ADM) =  90 0

Lại có, MD ⊥ AC ⇒ (MEA) =  90 0

Suy ra tứ giác ADME là hình chữ nhật (vì có 3 góc vuông)

∆ ABC vuông cân tại A ⇒  ∠ B = 45 0  và AB = AC = 4cm

Suy ra:  ∆ DBM vuông cân tại D

⇒ DM = DB

Chu vi hình chữ nhật ADME bằng:

2(AD + DM) = 2(AD + DB) = 2AB = 2.4 = 8 (cm)

18 tháng 12 2017

ai giúp mk đi đg cần gấp

18 tháng 12 2017

a)  ADME là hình chữ nhật vì có 3 góc vuông:  \(\widehat{A}\)\(\widehat{D}\)\(\widehat{E}\)= 900

b)  Để ADME là hình vuông thì AM là phân giác \(\widehat{A}\)

Vậy M là giao đường phân giác góc A với BC thì ADME là hình vuông

a) Xét tứ giác EAFH có 

\(\widehat{AFH}=90^0\)

\(\widehat{FAE}=90^0\)

\(\widehat{AEH}=90^0\)

Do đó: EAFH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: \(\widehat{IAC}=90^0-\widehat{AFE}\)

\(\widehat{ICA}=90^0-\widehat{B}\)

mà \(\widehat{AFE}=\widehat{B}\left(=\widehat{HAC}\right)\)

nên \(\widehat{IAC}=\widehat{ICA}\)

mà \(\widehat{IBA}=90^0-\widehat{ICA}\)

và \(\widehat{IAB}=90^0-\widehat{IAC}\)

nên \(\widehat{IAB}=\widehat{IBA}\)

Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)

nên ΔIAB cân tại I(Định lí đảo của tam giác cân)

Xét ΔIAC có \(\widehat{IAC}=\widehat{ICA}\)(cmt)

nên ΔIAC cân tại I(Định lí đảo của tam giác cân)

Ta có: IA=IB(ΔIAB cân tại I)

IA=IC(ΔIAC cân tại I)

Do đó: IB=IC

mà I nằm giữa B và C

nên I là trung điểm của BC(Đpcm)

9 tháng 7 2021

cho mik xin hình vs ạ hihi