Cho tam giác ABC nhọn có trực tâm H nội tiếp đường tròn (O), cạnh BC cố định. Xác định vị trí của điểm A để HA + HB + HC có GTLN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ các đường kính AM, BN, CP của (O). Dễ cm được BMCH, CNAH,APBH là các hình bình hành => AH = CN; BH = CM; CH = BM
=> AH + BH + CH = CN + CM + BM
Vì BC cố định nên CN không đổi => (AH + BH + CH) max khi (CM + BM) max. Ta sẽ cm rằng điều đó xảy ra khi M trùng điểm chính giữa cung nhỏ BC.
Thật vậy gọi Q là điểm chính giữa cung nhỏ BC. Kéo dài BQ đoạn QD = BQ = CQ, kéo dài BM đoạn ME = MC => BD = BQ + CQ = 2BQ và BE = BM + CM
Vì tg CQD cân tại Q => ^BDC = ^QCD = ^BQC/2
Tương tự tg CME cân tại M => ^BEC = ^MCE = ^BMC/2
Mà ^BMC = ^BQC => ^BEC = ^BDC => B,C,D,E cùng thuộc đường tròn đường kính BD => BE =< BD <=> BM + CM =< 2BQ => (BM + CM)
Max = 2BQ xảy ra khi E trùng D hay khi M trùng Q khi đó A là điểm chính giữa cung lớn BC
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp đường tròn đường kính BC
I là trung điểm của BC
b: góc ABK=1/2*sđ cung AK=90 độ
=>BK//CH
góc ACK=1/2*sđ cung AK=90 độ
=>CK//BH
mà BK//CH
nên BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
=>H,I,K thẳng hàng
a) D là giao điểm của đường vuông góc của AB tại B , đường vuông góc của AC tại C và đường tròn O
b) Vì P đối xứng với D qua AB ==> BD=PB ; tương tự DC=CQ
GỌI GIAO ĐIỂM CỦA HD VÀ BC LÀ K
vì BHCD là HBH ==> DK=KH ==> \(\frac{DK}{KH}=1\)
ÁP DỤNG TA-LÉT ĐẢO VÀO 2 TAM GIÁC DHP VÀ DHQ LÀ RA