K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

a: Xét ΔHAB có 

N là trung điểm của HB

M là trung điểm của HA

Do đó: NM là đường trung bình của ΔAHB

Suy ra: \(NM=\dfrac{AB}{2}=2\left(cm\right)\)

12 tháng 10 2021

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

Suy ra:AN//CM

a: Xét ΔADH vuông tại H và ΔABH vuông tại H có

góc HAD=góc HBA

Do đó: ΔADH đồng dạng với ΔBAH

Suy ra: HA/HB=HD/HA

hay \(HA^2=HD\cdot HB\)

b: \(BD=9+16=25cm\)

\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)

AB=20cm

c: Xét ΔAHB có

K là trung điểm của AH

M là trung điểm của HB

Do đó: KM là đường trung bình

=>KM//AB và KM=AB/2

=>KM//DN và KM=DN

=>DKMN là hình bình hành

5 tháng 1 2017

a, Chú ý EF là đường trung bình trong tam giác HAB

b, Chứng minh F là trực tâm tam giác BEC và sử dụng a)

c, Sử dụng tỉ số sinA trong tam giác vuông HAB và tỉ số tanA trong tam giác vuông BAC để tính AB, CB và AC, EC

31 tháng 10 2021

a: Xét ΔHAB có 

M là trung điểm của HB
I là trung điểm của HA

Do đó: MI là đường trung bình của ΔAHB

Suy ra: MI//AB

hay AIMB là hình thang

NV
4 tháng 1

a.

Do M là trung điểm BH, I là trung điểm AH

\(\Rightarrow IM\) là đường trung bình tam giác ABH

\(\Rightarrow IM||AB\Rightarrow ABMI\) là hình thang

b.

Cũng do IM là đường trung bình tam giác ABH \(\Rightarrow IM=\dfrac{1}{2}AB\)

Mà E là trung điểm CD \(\Rightarrow CE=\dfrac{1}{2}CD\)

Do ABCD là hình chữ nhật \(\Rightarrow\left\{{}\begin{matrix}AB=CD\\AB||CD\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}IM=CE\\IM||CD\end{matrix}\right.\) \(\Rightarrow IMCE\) là hình bình hành

c.

Do \(\left\{{}\begin{matrix}IM||AB\left(cmt\right)\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow IM\perp BC\)

Lại có \(BH\perp AC\Rightarrow BH\perp IC\)

\(\Rightarrow M\) là giao điểm 2 đường cao của tam giác IBC

\(\Rightarrow M\) là trực tâm tam giác ABC

\(\Rightarrow CM\) là đường cao thứ 3 hay \(CM\perp IB\)

Lại có \(CM||IE\) (do IMCE là hbh)

\(\Rightarrow IE\perp IB\Rightarrow\Delta IBE\) vuông tại I

\(\Rightarrow IG\) là trung tuyến ứng với cạnh huyền \(\Rightarrow IG=\dfrac{1}{2}BE\) 

\(\Delta BCE\) vuông tại C có \(CG\) là trung tuyến ứng với cạnh huyền \(\Rightarrow CG=\dfrac{1}{2}BE\)

\(\Rightarrow CG=IG\) hay tam giác ICG cân tại G

NV
4 tháng 1

d.

Từ K hạ \(KF\) vuông góc đường thẳng CD (F thuộc đường thẳng CD)

\(\Rightarrow KF||BC\) (cùng vuông góc CD)

\(\Rightarrow\widehat{BKF}=\widehat{HBC}\) (đồng vị) (1)

Lại có \(\widehat{HBC}=\widehat{BAC}\) (cùng phụ \(\widehat{ACB}\)) (2)

\(\widehat{BAC}=\widehat{CDB}\) (tính chất hình chữ nhật) (3)

Từ (1);(2);(3) \(\Rightarrow\widehat{BKF}=\widehat{CDB}\) (4)

Mà \(\left\{{}\begin{matrix}BK=AC\left(gt\right)\\AC=BD\left(\text{hai đường chéo hcn}\right)\end{matrix}\right.\) 

\(\Rightarrow BK=BD\Rightarrow\Delta BDK\) cân tại B

\(\Rightarrow\widehat{BKD}=\widehat{BDK}\) (5)

(4);(5) \(\Rightarrow\widehat{BKF}+\widehat{BKD}=\widehat{CDB}+\widehat{BDK}\)

\(\Rightarrow\widehat{FKD}=\widehat{FDK}\)

\(\Rightarrow\Delta DKF\) vuông cân tại F

\(\Rightarrow\widehat{FDK}=45^0\) hay \(\widehat{KDC}=45^0\)

a: Xét ΔHAD có HM/HA=HN/HD

nên MN//AD

 b: Xét ΔHAD có MN//AD

nên MN/AD=HM/HA=1/2

=>MN=1/2AD=1/2BC

=>MN=BI

mà MN//BI

nên BMNI là hình bình hành

30 tháng 11 2021

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình của ΔHAB

Suy ra: MN//AB