CMR tích của 8 số tự nhiên liên tiếp luôn chia hết cho 128 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên .
Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm
c)Gọi 5 số tự nhiên liên tiếp là a,a+1,a+2,a+3,a+4
Ta có: a+a+1+a+2+a+3+a+4 =(a+a+a+a+a)+(1+2+3+4) =5.a+10 =5.(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
Gọi 8 số nguyên liên tiếp lần lượt là : 2x - 4 , 2x - 3 , 2x - 2 , 2x - 1 , 2x , 2x + 1 , 2x + 2 , 2x + 3 .
=> Tích của 8 số tự nhiên liên tiếp là :
( 2x - 4 ) . ( 2x - 3 ) . ( 2x - 2 ) . ( 2x - 1 ) . 2x . ( 2x + 1 ) . ( 2x + 2 ) . ( 2x + 3 )
= 2 ( x - 2 ) . ( 2x - 3 ) . 2 ( x - 1 ) . ( 2x - 1 ) . 2x . ( 2x + 1 ) . 2 ( x + 1 ) . ( 2x + 3 )
= 16 ( x - 2 ) ( x - 1 ) x ( x + 1 ) . ( 2x - 3 ) ( 2x - 1 ) ( 2x + 1 ) . ( 2x + 3 ) chia hết cho 16
=> ( x - 2 ) ( x - 1 ) x ( x + 1 ) là tích 4 số nguyên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 4 . Do đó ( x - 2 ) ( x - 1 ) x ( x + 1 ) chia hết cho 8 .
Vậy ( 2x - 4 ) . ( 2x - 3 ) . ( 2x - 2 ) . ( 2x - 1 ) . 2x . ( 2x + 1 ) . ( 2x + 2 ) . ( 2x + 3 ) chia hết cho 16 . 8 = 128
Gọi 8 số nguyên liên tiếp lần lượt là 2x – 4, 2x – 3, 2x – 2, 2x – 1, 2x, 2x +1, 2x +2, 2x +3.
Thì tích tám số tự nhiên liên tiếp là:
(2x – 4).(2x – 3).(2x – 2).(2x – 1). 2x .(2x +1).(2x +2).(2x +3)
= 2(x – 2). (2x – 3). 2(x – 1). (2x – 1). 2x. (2x +1) .2(x +1) .(2x +3)
= 16 (x – 2)(x – 1)x(x + 1).(2x – 3)(2x – 1)(2x +1) .(2x +3) chia hết cho 16
(x – 2)(x – 1)x(x + 1) là tích 4 số nguyên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 4. do đó (x – 2)(x – 1)x(x + 1) chia hết cho 2.4 = 8
Vậy (2x – 4).(2x – 3).(2x – 2).(2x – 1). 2x .(2x +1).(2x +2).(2x +3) chia hết cho 16.8 = 128
Vì là 3 số tự nhiên liên tiếp nên chúng xẽ có dạng n;n+1;n+2
mà n+n+1+n+2=n+n+n+1+2=3n+3=3*(n+1) chia hết cho 3=> n+n+1+n+2 chia hết cho 3(đpcm)
Vì là 4 số tự nhiên liên tiếp nên chúng xẽ có dạng n;n+1;n+2;n+3
mà n+n+1+n+2+n+3=n+n+n+n+1+2+3=4n+6
Vì 4n chia hết cho 4;6 không chia hết cho 4
=>4n+6 không chia hết cho 4=>n+n+1+n+2+n+3 không chia hết cho 4(đpcm)
Giải:
Gọi 5 số tự nhiên đó lần lượt là: \(a;a+1;a+2;a+3;a+4\) với \(a\in N\)
Ta có:;
\(a.\left(a+1\right).\left(a+2\right).\left(a+3\right).\left(a+4\right)\)
\(=5a.\left(1.2.3.4\right)\)
\(=5a.24\)
\(=120a⋮120\)
Vậy tích 5 số tự nhiên liên tiếp thì luôn chia hết cho 120
trong 8 nguyên liên tiếp chắc chắn phải có 4 số chẵn
Trong đó :
+Phải có 1 số chia hết cho 8
+3 số chẵn còn lại phải có ít nhất 1 số chia hết cho 4
+Tích 2 số chẵn còn lại chia hết cho 4
=> tích 8 số nguyên liêp tiếp có dạng 4*4*8*k=128k
Vậy nó chia hết cho 128
gọi 8 số nguyên liên tiếp la 2x-4;2x-3;2x-2;2x-1;2x;2x+1;2x+2;2x+3
Ta có: (2x-4)(2x-3)(2x-2)(2x-1)2x(2x+1)(2x+2)(2x+3)
=2(x-2)(2x-3)2(x-1)(2x-1)2x(2x+1)2(x+1)(2x+3)
=16(x-2)(x-1)x(x+1)(2x-3)((2x-1)(2x+1)(2x+3) chia hết cho 16
(x-2)(x-1)x(x+1) là tích 4 số nguyên liên tiếp nên co 1 số chia hết co 2 và 1 số chia hết cho 4
mà 2.4=8
=> đpcm