K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

@Nguyễn Thanh Hằng @@Nk>↑@ @Bonking

9 tháng 12 2018

@Nguyễn Việt Lâm

27 tháng 2 2021

`(x^2-x+1)^4+4x^4=5x^2(x^2-x+1)^2`

Đặt `a=(x^2-x+1)^2,b=x^2`

`pt<=>a^2+4b^2=5ab`

`<=>a^2-5ab+4b^2=0`

`<=>a^2-ab-4ab+4b^2=0`

`<=>a(a-b)-4b(a-b)=0`

`<=>(a-b)(a-4b)=0`

`<=>` $\left[ \begin{array}{l}a=b\\a=4b\end{array} \right.$

`+)a=b`

`<=>x^2=(x^2-x+1)^2`

`<=>(x^2+1)(x^2-2x+1)=0`

`<=>(x-1)^2=0` do `x^2+1>0`

`<=>x=1`

`+)a=4b`

`<=>x^2=4(x^2-x+1)^2`

`<=>x^2=(2x^2-2x+1)^2`

`<=>(2x^2-x+1)(2x^2-3x+1)=0`

`+)2x^2-x+1=0`

`<=>x^2-1/2x+1/2=0`

`<=>(x-1/4)^2+7/16=0` vô lý

`+)2x^2-3x+1=0`

`<=>2x^2-2x-x+1=0`

`<=>2x(x-1)-(x-1)=0`

`<=>(x-1)(2x-1)=0`

`<=>` $\left[ \begin{array}{l}x=1\\x=\dfrac{1}{2}\end{array} \right.$

Vậy `S={1,1/2}`

27 tháng 2 2021

:O

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

3 tháng 2 2021

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}

16 tháng 1 2022

 \(1,\dfrac{5x-1}{3}-1=2x+3\\ \Leftrightarrow\dfrac{5x-4}{3}=2x+3\\ \Leftrightarrow5x-4=3\left(2x+3\right)\\ \Leftrightarrow5x-4=6x+9\\ \Leftrightarrow6x+9-5x+4=0\\ \Leftrightarrow x+13=0\\ \Leftrightarrow x=-13\)

\(2,16x^2-3=\left(4x-3\right)\left(5x+1\right)\\ \Leftrightarrow16x^2-3=20x^2-15x+4x-3\\ \Leftrightarrow16x^2-3=20x^2-11x-3\\ \Leftrightarrow20x^2-11x-3-16x^2+3=0\\ \Leftrightarrow4x^2-11x=0\\ \Leftrightarrow x\left(4x-11\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{11}{4}\end{matrix}\right.\)

\(3,ĐKXĐ:x\ne\pm2\\ \dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{-x\left(15-x\right)}{x^2-4}\\ \Leftrightarrow\dfrac{\left(x-2\right)^2-3\left(x+2\right)}{x^2-4}=\dfrac{x^2-15x}{x^2-4}\\ \Leftrightarrow\left(x-2\right)^2-3\left(x+2\right)=x^2-15x\)

\(\Leftrightarrow x^2-4x+4-3x-6-x^2+15x=0\\ \Leftrightarrow8x-2=0\\ \Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)

a:Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)

=>3x-9-10x+2=-4

=>-7x-7=-4

=>-7x=3

=>x=-3/7

b: =>\(\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)

=>\(2\left(5-x\right)+7\left(x-2\right)=4\left(x-1\right)+x\)

=>10-2x+7x-14=4x-4+x

=>5x-4=5x-4

=>0x=0(luôn đúng)

Vậy: S=R\{0;2}

27 tháng 3 2022

a) (x2 - 4x)2 = 4(x2 - 4x) 

<=> (x2 - 4x)(x2 - 4x - 4) = 0

<=> x(x - 4)(x2 - 4x - 4) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\\left(x-2\right)^2=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=\pm\sqrt{8}+2\end{matrix}\right.\)

b) (x + 2)2 - x + 1 = (x - 1)(x + 1) 

<=> x2 + 4x + 4 - x + 1 = x2 - 1

<=> 3x + 5 = -1

<=> x = -2 

[Lớp 8]Bài 1. Giải phương trình sau đây:a) \(7x+1=21;\)b) \(\left(4x-10\right)\left(24+5x\right)=0;\)c) \(\left|x-2\right|=2x-3;\)d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\) Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\) Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\) Bài 4. Giải bài toán bằng cách lập phương...
Đọc tiếp

undefined

[Lớp 8]

Bài 1. Giải phương trình sau đây:

a) \(7x+1=21;\)

b) \(\left(4x-10\right)\left(24+5x\right)=0;\)

c) \(\left|x-2\right|=2x-3;\)

d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\)

 

Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:

                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\)

 

Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\)

 

Bài 4. Giải bài toán bằng cách lập phương trình:

Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi thực hiện người đó giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút. 

Tính quãng đường AB.

 

Bài 5. Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD⊥ AB (D ∈ AB), HE ⊥ AC (E∈ AC). AB=12cm, AC=16cm.

a) Chứng minh: ΔHAC đồng dạng với ΔABC;

b) Chứng minh AH2=AD.AB;

c) Chứng minh AD.AB=AE.AC;

d) Tính \(\dfrac{S_{ADE}}{S_{ABC}}.\)

9
26 tháng 3 2021

Bài 4 :

24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ

Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0 

Suy ra quãng đường AB là 36x(km)

Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)

Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)

Ta có phương trình: 

\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)

Vậy quãng đường AB dài 36.2 = 72(km)