Tìm số tự nhiên x nhỏ nhất biết khi chia x cho các số 5;7;11 thì được các số dư lần lượt la 3;4;6
Giúp mình nhé!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x chia 8;12;16 dư 2
=>x-2 chia hết cho 8;12;16
mà 8=2^3
12=2^2x3
16=2^4
=> BCNN(8;12;16)=2^4x3=48
=>x-2 thuộc B(48)=[48;96;144;....]
x=[50;98;146;....]
mà x nhỏ nhất có 2 chữ số =>a=50
b) ta có a chia 12 dư 11
a chia 15 dư 14
=> a+1 chia hết cho 12 và 15
=> a+1 thuộc BC(12;15)
mà 12=2^2x3
15=3x5
=>BCNN(12;15)=2^2X3X5=60
=> a+1 thuộc B(60)=[60;120;180;.....]
a=[59;119;179;....]
mà a nhỏ nhất =>a=59
c) x chia 50;38;25 dư 12
=> x-12 chia hết cho 50;38;25
mà 50=2x5^2
38=2x19
25=5^2
=>BCNN(50;38;25)=2x5^2x19=950
=>a-12 thuộc B(950)=[950;1900;2850;....]
a=[962;1912;2862;....]
mà a bé nhất =>a=962
nhớ tick cho mình đấy
b) Theo đề bài, A : 12,15 (dư lần lượt là 11 và 14)
Vậy (A+1) chia hết cho 12,15
BCNN của 12,15 là:
\(\hept{\begin{cases}12=2^2\times3\\15=3\times5\end{cases}}\Rightarrow BCNN=2^2\times3\times5=60\)
Vậy a=60-1=59
Học tốt nha ^-^
Gọi số cần tìm là x
Theo bài ra, ta có:
\(x=5k+3\Rightarrow2x-1=10k+5⋮5\)
\(x=7t+4\Rightarrow2x-1=14t+7⋮7\)
\(x=11m+6\Rightarrow2x-1=22m+11⋮11\)
\(\Rightarrow2x-1\in B\left(5;7;11\right)\)mà 2x - 1 nhỏ nhất nên \(2x-1=BCNN\left(5;7;11\right)\)
Ta có: \(BCNN\left(5;7;11\right)=5.7.11=385\)
\(\Rightarrow2x-1=385\Rightarrow x=193\)
Vậy x = 193
Chúc bạn học tốt.
Lời gải:
Theo đề ra ta có:
$x-1\vdots 4; x-2\vdots 5; x-3\vdots 6$
$\Rightarrow x-1+4\vdots 4; x-2+5\vdots 5; x-3+6\vdots 6$
$\Rightarrow x+3\vdots 4, 5, 6$
$\Rightarrow x+3=BC(4,5,6)$
Để $x$ nhỏ nhất thì $x+3$ cũng phải nhỏ nhất.
$\Rightarrow x+3=BCNN(4,5,6)$
$\Rightarrow x+3=60$
$\Rightarrow x=57$
1.Gọi số tự nhiên cần tìm là A
Chia cho số 29 dư 5 nghĩa là: A = 29p + 5 (p thuộc N)
Tương tự: Chia cho số 31 dư 28 nghĩa là: 31q + 28 (q thuộc N)
Nên 29p + 5 = 31q + 28 => 29 (p - q) = 2q + 23
Ta thấy : 2q + 23 là số lẻ => 29 (p - q) cũng là số lẻ => p - q = 1
Theo giả thiết A nhỏ nhất nên => q nhỏ nhất (A = 31q + 28)
=> 2q = 29(p - q) - 23 nhỏ nhất
=> p- q nhỏ nhất
Do đó p - q = 1 => 2q = 29 -23 = 6
=> q = 3
Vậy số cần tìm A là : 31q + 28 = 31 x 3 + 28 = 121
2. Số đó phải lớn hơn 10. Ta có:
129 : x = b =>x.b + 10 = 129 (b là thương) => x = (129 - 10) : b = 129 : b
61 : x = c dư 10 => x.c + 10 = 61 (c là thương) => x = 51 : c
x = 119 : b = 51 : c
119 chỉ chia hết cho 7 và 17 (ngoài 1 và 119) : 119 : 17 = 7
51 chỉ chia hết cho 3 và 17 (ngoài 1 và 51) : 51 : 3 = 17
Mà số đó lớn hơn 10 nên x = 17
Vậy x = 17
\(2=2;3=3;5=5;8=2^3\)
Do đó: \(BCNN\left(2;3;5;8\right)=2^3\cdot3\cdot5=120\)
x chia 2;3;5;8 đều dư 1 nên ta có: \(x-1\in BC\left(2;3;5;8\right)\)
=>\(x-1\in B\left(120\right)\)
mà x nhỏ nhất
nên x-1=120
=>x=121
Theo đề bài, ta có: x : 5 dư 3; x : 7 dư 5; x : 9 dư 7 và x là số bé nhất
=> x - 3 chia hết cho 5; x - 5 chia hết cho 7; x - 7 chia hết cho 9
=> x - 3 + 5 chia hết cho 5; x - 5 + 7 chia hết cho 7; x - 7 + 9 chia hết cho 9
=> x + 2 chia hết cho 5,7,9
=> x + 2 \(\in\)B(5, 7, 9)
Ta có : 5 = 5
7 = 7
9 = \(^{3^2}\)
=> BCNN(5,7,9) = \(^{3^2}\)x 7 x 5 = 315
=> x+2 \(\in\)B(315) . Vì x bé nhất nên x + 2 bé nhất. x\(\in\)N => x + 2 > 1 => x + 2 = 315 => x = 313
bạn tham khảo ở link này nhé
https://olm.vn/hoi-dap/detail/21877667121.html