cho số a không chia hết cho 2 và 3
CMR:4a2+3a+5 chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a không chia hết cho 2 và 3 => a không chia hết cho 6
=> a = 6k + 1 hoặc a = 6k + 5
Với mỗi dạng của a bn thay vào biểu thức A sẽ ra đpcm
Đặt \(A=4a^2+3a+a\) ta có :
\(A=4a^2+a\left(3+1\right)\)
\(A=4a^2+4a\)
\(A=4a\left(a+1\right)\)
\(A=3a\left[a\left(a+1\right)\right]\)
Lại có :
\(3a⋮3\)
\(a\left(a+1\right)⋮2\) ( vì trong 2 số tự nhiên liên tiếp bất kì luôn có một số chẵn, mà số chẵn chia hết cho 2 nên tích đó chia hết cho 2 )
\(\Rightarrow\)\(A=3a\left[a\left(a+1\right)\right]\) chia hết cho 2 và 3
\(\Rightarrow\)\(A=3a\left[a\left(a+1\right)\right]\) chia hết cho 6
Vậy \(4a^2+3a+a\) chia hết cho 6
Chúc bạn học tốt ~
Ta có:
\(4a^2+3a+a\)
\(\Leftrightarrow4a^2+4a\Leftrightarrow4a\left(a+1\right)\)
Hơi sai rồi bạn, bạn thử thế a = 1 thử xem
Tham khảo tại đây nhé : Câu hỏi của Mai Phương - Toán lớp 8 - Học toán với OnlineMath
\(a\)có dạng \(6k+1\)hoặc \(6k-1\).
Với \(a=6k+1\):
\(A=4\left(6k+1\right)^2+3\left(6k+1\right)+5\equiv4+3+5\equiv0\left(mod6\right)\).
Với \(a=6k-1\):
\(A=4\left(6k-1\right)^2+3\left(6k-1\right)+5\equiv4-3+5\equiv0\left(mod6\right)\).
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
Nếu a ko chia hết cho 2 và 3 thì a=6k+1 hoặc a=6k+5
Khi a=6k+1 thì f(x)=4(6k+1)^2+3(6k+1)+5
=4(36k^2+12k+1)+18k+8
=144k^2+48k+4+18k+8
=144k^2+66k+12
=6(24k^2+11k+2) chia hết cho 6
Nếu a=6k+5 thì
f(a)=4(6k+5)^2+3(6k+5)+5
=4(36k^2+60k+25)+18k+20
=144k^2+240k+100+18k+20
=6(24k^2+43k+20) chia hết cho 6