K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

9 tháng 2 2020

x y z O C H K

a, xét tam giác OCH và tam giác OCK có : OC chung

góc HOC = góc KOC  do OC là phân giác của góc KOH (gT)

góc OHC = góc CKO = 90

=> tam giác OCK =tam giác OCH (ch-gn)

b,  tam giác OCK =tam giác OCH  (câu a)

=> CH = CK (đn)

xét tam giác HCB và tam giác KCA : có góc HCB = góc KCA (đối đỉnh)

góc BHC = góc AKC = 90 

=> tam giác HCB = tam giác KCA (cgv-gnk)

=> HB = KA (đn)

c,CK = CH (Câu b)

=> tam giác CHK cân tại C (đn)

=> góc KHC = (180 -  góc HCK) : 2 (tc)          (1)

tam giác HCB = tam giác KCA (câu b) => CB = CA (đn)

=> tam giác CBA cân tại C (đn) => góc CAB (180 - góc BCA) : 2 (tc)        (2)

góc HCK = góc BCA (đối đỉnh)       (3)

(1)(2)(3) => góc KHC = góc CAB  mà 2 góc này so le trong

=> HK // AB (tc)

d,   có OH = OK do tam giác OCH = tam giác OCK (câu a) 

HB = KA do tam giác HC = tam giác KCA (câu b)

OH + HB = OB

OK + KA = OA 

=> OA = OB 

=> tam giác OAB cân tại O (đn) 

để OA = AB 

<=> tam giác OAB đều  (tc)

<=> góc xOy = 60

e, không biết làm  em mới lớp 6

9 tháng 2 2020

Ko sao đâu. Lớp 6 mà làm được như vậy là giỏi rồi em 

20 tháng 4 2018

1: \(O_2D=O_2A+CD=\dfrac{AC}{2}+\dfrac{BC}{2}=\dfrac{AB}{2}=R_1\)

góc O2MD=góc O2MC+góc CMD

=1/2*sđ cung CM+góc MCA

=90 độ

=>DM là tiếp tuyến của (O2)

PD^2=BD*DA=DC*BA=DM^2=O2D-R2^2

=>PD^2=R1^2-R2^2

2: Xet ΔD1BD vuông tại D1 và ΔD4BD vuông tại D4 có

BD chung

góc D1BD=góc D4BD

=>ΔD1BD=ΔD4BD

=>D1=D4

CM tương tự, ta được: DD2=DD3, BP=BQ, PA=PB

=>D1D+D2D+D3D+D4D<=1/2(BP+PA+AQ+QB)

=>2*(D1D+D2D)<=PA+PB

PB^2=BD^2+DP^2>=2*DB*DP

=>\(PB>=\dfrac{2\cdot DB\cdot DP}{PB}=2\cdot D_1D\)

Chứng minh tương tự,ta được: \(AP>=\dfrac{2\cdot DA\cdot DP}{PA}=2\cdot D_2D\)

=>ĐPCM