Cm vs n là số tự nhiên bất kì thì \(n^2+\left(n+1\right)^2+\left(n+3\right)^2\) ^2 ko thể tận cùng bằng chữ số 7 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy các số trên là bình phương các số tự nhiên liên tiếp.
Mà các số chính phương đều không tận cùng bằng 2, 3, 7 và 8
Nên chúng chỉ tận cùng bằng 0 ,1 , 4 , 5 , 6 và 9
Xét từng trường hợp nếu chọn các bộ số tận cùng của các số trên được {1,4,5,6} ; {1;4;5;9}; {1;4;6;9} ; {1;5;6;9} và các hoán vị của các bộ số này. Nhận thấy tổng của các phần tử trong mỗi bộ số đều không tận cùng bằng 7
Vậy có điều phải chứng minh
Dễ thấy các số trên là bình phương các số tự nhiên liên tiếp.
Mà các số chính phương đều không tận cùng bằng 2, 3, 7 và 8
Nên chúng chỉ tận cùng bằng 0 ,1 , 4 , 5 , 6 và 9
Xét từng trường hợp nếu chọn các bộ số tận cùng của các số trên được {1,4,5,6} ; {1;4;5;9}; {1;4;6;9} ; {1;5;6;9} và các hoán vị của các bộ số này. Nhận thấy tổng của các phần tử trong mỗi bộ số đều không tận cùng bằng 7
Vậy có điều phải chứng minh
Bài 1:
Theo đầu bài ta có:
\(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
Từ đó suy ra:
\(H=a\cdot\left(a+b\right)\cdot\left(a+c\right)\)
\(=a\cdot-c\cdot-b\)
\(=a\cdot b\cdot c\)
\(K=c\cdot\left(c+a\right)\cdot\left(c+b\right)\)
\(=c\cdot-b\cdot-a\)
\(=a\cdot b\cdot c\)
Vậy H = K ( đpcm )
Này bạn, tớ thấy bài 1 đề phải là a + b + c = 0 chứ. Sao lại a + b + b = 0 được
Đặt \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)
\(=\left(n^2+3n\right)\left(n^2+2n+n+2\right)+1\)
Đặt \(n^2+3=t\)
=> \(A=t\left(t+2\right)+1\)
\(=t^2+2t+1\)
\(=\left(t+1\right)^2\)
=> A là số chính phương
Vậy với mọi số tự nhiên n thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương ( đpcm )
a) \(\frac{\left(n+1\right)!}{n!\left(n+2\right)}=\frac{n!\left(n+1\right)}{n!\left(n+2\right)}=\frac{n+1}{n+2}\)
b)\(\frac{n!}{\left(n+1\right)!-n!}=\frac{n!}{n!\left(n+1\right)-n!}=\frac{n!}{n!\left(n+1-1\right)}=\frac{1}{n}\)
c)\(\frac{\left(n+1\right)!-\left(n+2\right)!}{\left(n+1\right)!+\left(n+2\right)!}=\frac{n!\left(n+1\right)-n!\left(n+1\right)\left(n+2\right)}{n!\left(n+1\right)+n!\left(n+1\right)\left(n+2\right)}=\frac{n!\left(n+1\right)\left(1-n-2\right)}{n!\left(n+1\right)\left(1+n+2\right)}=\frac{-n-1}{n+3}\)
( Kí hiệu n!=1.2.3.4...n)