Cho hình bình hành ABCD. Trên cạnh BC và DC lần lượt lấy hai điểm M, N. Đặt \(\dfrac{MB}{MC}=x\), \(\dfrac{NC}{ND}=y\). Đường chéo BD cắt AM và AN lần lượt tại P và Q. Tính \(\dfrac{S_{APQ}}{S_{AMN}}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
góc AQP=góc AMN(=180 độ-góc PQN)
=>ΔAPQ đồng dạng với ΔANM
=>S APQ/S AMN=(AQ/AM)^2
ΔAQM vuông cân tại Q
=>AQ^2+QM^2=AM^2
=>AQ=AM/căn 2
=>S AMN=2*S APQ
a) Bằng tính chất của hình bình hành và hệ quả ĐL Thales ta có:
\(\frac{KM}{KH}=\frac{BF}{BC}=\frac{MF}{DC}=\frac{MF}{EF}\). Suy ra KF // EH (Theo ĐL Thales đảo) (đpcm).
b) Gọi giao điểm của EK và HF là S. Ta đi chứng minh B,D,S thẳng hàng. Thật vậy:
Gọi MS cắt EH và KF lần lượt ở I và J.
Theo bổ đề hình thang (cho hình thang KEHF) thì I là trung điểm EH và J là trung điểm KF
Do các tứ giác BKMF và DEMH là hình bình hành nên BD đi qua trung điểm của EH và KF
Từ đó suy ra: 2 đường thẳng BD và MS trùng nhau hay 3 điểm B,D,S thẳng hàng => ĐPCM.
c) Dễ thấy: SKEF = SKHF (Chung đáy KF, cùng chiều cao vì KF//EH) => SKME = SFMH
Mà SMKAE = 2.SKME; SMHCF = 2.SFMH nên SMKAE = SMHCF (đpcm).
Tự vẽ hình nhé, cô sẽ hướng dẫn :)
b. Xét tứ giác DQBN có DQ song song và bằng BN nên đó là hình bình hành. Vậy QB//DN.
Từ đó suy ra được GHKI là hình bình hành hay KH = GI.
Lại có QG và KN là các đường trung bình nên AG = GI = HK = KC.
Tương tự MH cũng là đường trung bình nên AG = 2 MH. Vậy HK = KC =2 MH hay MC = 5 MH.
c. Lập tỉ số diện tích bằng cách dựa vào các tỉ số giữa cạnh đáy là chiều cao của các hình.
Ta có \(\frac{S_{CKN}}{S_{CMB}}=\frac{2}{5}.\frac{1}{2}=\frac{1}{5}\)
Mà \(\frac{S_{CMB}}{S_{ABCD}}=\frac{1}{2}.\frac{1}{2}=\frac{1}{4}\) , vì vậy \(\frac{S_{KCN}}{S_{ABCD}}=\frac{1}{5}.\frac{1}{4}=\frac{1}{20}\)
c. Ta thấy \(\frac{S_{KCN}}{S_{MBC}}=\frac{KC}{MC}.\frac{d\left(B,MC\right)}{d\left(N,MC\right)}=\frac{2}{5}.\frac{1}{2}=\frac{1}{5}\)
Với d(B,MC) là độ dài chiều cao kẻ từ B xuống MC.