K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

=>(SAD) giao (SBC)=xy, xy đi qua S, xy//AD//BC

b: Chọn mp(SBC) có chứa BC

\(P\in SC\subset\left(SBC\right)\)

\(P\in\left(MNP\right)\)

=>\(P\in\left(MNP\right)\cap\left(SBC\right)\)

mà NP//SB

nên (MNP) giao (SBC)=xy, xy đi qua P và xy//NP//SB

=>(MNP) giao (SBC)=PN

Gọi I là giao của PN với BC

=>I trùng với N

13 tháng 8 2023

mình xin hình vẽ

a: Xét (SAB) và (SCD) có

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

AB//CD

Do đó: \(\left(SAB\right)\cap\left(SCD\right)=xy;S\in xy\);xy//AB//CD

b: Trong mp(ABCD), gọi I là giao điểm của MN với AD

\(I\in AD\)

\(I\in MN\subset\left(MNP\right)\)

Do đó: \(I=AD\cap\left(MNP\right)\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

- Ta có: S là điểm chung của hai mặt phẳng (SAD) và (SBC) 

Từ S kẻ Sx sao cho Sx // AD // BC. Vậy Sx là giao tuyến của hai mặt phẳng (SAD) và (SBC).

- Ta có: M, P là trung điểm của SA, SD. Suy ra MP // AD // BC 

Có: N là điểm chung của hai mặt phẳng (MNP) và (ABCD)

Từ N kẻ NQ  sao cho NQ // AD.

Vậy NQ là giao tuyến của hai mặt phẳng (MNP) và (ABCD). 

8 tháng 9 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

(h.2.73) a) Gọi O = AC ∩ MD Trong mặt phẳng (SMB) gọi I = SO ∩ MN.

Ta có: I = (SAC) ∩ MN

b) AD // BC (BC ⊂ (SBC))

⇒ AD // (SBC). Mặt phẳng (SAD) cắt mặt phẳng (NBC) theo giao tuyến NP // AD (P ∈ SA). Ta có thiết diện cần tìm là hình thang BCNP.

18 tháng 10 2021

câu b MN và mp gì vậy ạ?

18 tháng 10 2021

Mình gửi tạm câu a trước, đợi bạn bổ sung câu b nha

undefined