Giải phương trình: \(\left(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)2013x=\dfrac{2012}{51}+\dfrac{2012}{52}+\dfrac{2012}{99}+\dfrac{2012}{100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\cdot x=\left(1+\dfrac{2011}{2}\right)+\left(1+\dfrac{2010}{3}\right)+...+\left(\dfrac{1}{2012}+1\right)+1\)
\(\Leftrightarrow x\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)=\dfrac{2013}{2}+\dfrac{2013}{3}+...+\dfrac{2013}{2013}\)
=>x=2013
Bạn kiểm tra lại đề, \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\) hay \(f\left(x\right)=\dfrac{x^3}{1-3x+3x^2}\)
Điều kiện: \(x\ge2012;y\ge2013;z\ge2014\)
Áp dụng bất đẳng thức Cauchy, ta có:
\(\left\{{}\begin{matrix}\dfrac{\sqrt{x-2012}-1}{x-2012}=\dfrac{\sqrt{4\left(x-2012\right)}-2}{2\left(x-2012\right)}\le\dfrac{\dfrac{4+x-2012}{2}-2}{2\left(x-2012\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{y-2013}-1}{y-2013}=\dfrac{\sqrt{4\left(y-2013\right)}-2}{2\left(y-2013\right)}\le\dfrac{\dfrac{4+y-2013}{2}-2}{2\left(y-2013\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{\sqrt{4\left(z-2014\right)}-2}{2\left(z-2014\right)}\le\dfrac{\dfrac{4+z-2014}{2}-2}{2\left(z-2014\right)}=\dfrac{1}{4}\end{matrix}\right.\)
Cộng vế theo vế, ta được:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}\le\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=2016;y=2017;z=2018\)
Vậy....
Đặt \(B=A\div C\)
\(C=2012+\dfrac{2011}{2}+...+\dfrac{1}{2012}=2012+\dfrac{2013-2}{2}+\dfrac{2013-3}{3}+...+\dfrac{2013-2012}{2012}\)
\(C=2012+\dfrac{2013}{2}+\dfrac{2013}{3}+...+\dfrac{2013}{2012}-1-1-...-1\)
\(C=2012+2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)-2011\)
\(C=1+2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)=\dfrac{2013}{2013}+2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)\)
\(C=2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)=2013.A\)
\(\Rightarrow B=\dfrac{A}{C}=\dfrac{1}{2013}\)
\(\frac{1}{1.2}+\frac{1}{3.4}+....+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{100}\right)\)
\(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-....-\frac{1}{50}=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
=> \(2013x.\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)=2013x.\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)
=> \(2013x.\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)=2012.\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\Rightarrow2013x=2012\Rightarrow x=\frac{2012}{2013}\)
Vậy \(x=\frac{2012}{2013}\)
p/s: --trình bày sai sót mong bỏ qua
ko hiểu