Cho a/2014 = b/2015 = c/2016. Chứng tỏ rằng: 4.(a-b).(b-c)=(c-a)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k$
$\Rightarrow a=2014k; b=2015k; c=2016k$
$\Rightarrow 4(a-b)(b-c)=4(2014k-2015k)(2015k-2016k)$
$=4(-k)(-k)=4k^2(1)$
Và:
$(c-a)^2=(2016k-2014k)^2=(2k)^2=4k^2(2)$
Từ $(1); (2)\Rightarrow 4(a-b)(b-c)=(c-a)^2$ (đpcm)
Đặt : \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\)
\(\Rightarrow\frac{a}{2014}=k\Rightarrow a=2014k\)
\(\Rightarrow\frac{b}{2015}=k\Rightarrow b=2015k\)
\(\Rightarrow\frac{c}{2016}=k\Rightarrow c=2016k\)
Ta có : \(4\left(a-b\right)\left(b-c\right)=4\left(2014k-2015k\right)\left(2015k-2016k\right)\)
\(=4k\left(2014-2015\right).k\left(2015-2016\right)=4k.\left(-1\right).k.\left(-1\right)=4.k^2\)( 1 )
\(\Rightarrow\left(c-a\right)^2=\left(2016k-2014k\right)\left(2016k-2014k\right)=\left[\left(2016k-2014k\right)^2\right]=\left[k\left(2016-2014\right)\right]=\left(k^2\right)^2=k^{2.4}\)( 2 )
Từ \(\left(1\right)\left(2\right)\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Đặt \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\Rightarrow a=2014k;b=2015k;c=2016k\)
=>\(4\left(a-b\right)\left(b-c\right)=4\left(2014k-2015k\right)\left(2015k-2016k\right)=4\left(-1k\right)\left(-1k\right)=4k^2\)
\(\left(c-a\right)^2=\left(2016k-2014k\right)^2=\left(2k\right)^2=4k^2\)
=>đpcm
\(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=\frac{a-b}{2014-2015}=\frac{b-c}{2015-2016}=\frac{c-a}{2016-2014}\)
=\(\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)=>\(\frac{\left(a-b\right)\left(b-c\right)}{\left(-1\right)\left(-1\right)}=\frac{\left(c-a\right)^2}{2^2}=\frac{\left(a-b\right)\left(b-c\right)}{1}=\frac{\left(c-a\right)^2}{4}\Leftrightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)