K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2015

p là số nguyên tố lớn hơn 3 => p có dạng 3k + 1 hoặc 3k + 2 ( k thuộc N*)

+) Nếu = 3k + 1 => p+2 = 3k + 3 = 3(k + 1) là hợp số => Loại

Vậy p = 3k + 2. Vì p nguyên tố nên k lẻ (nếu k chẵn thì 3k + 2 chẵn)

=> p + (p + 2) = 3k + 2 + (3k + 2 + 2) = 6k + 6 = 6.(k + 1) mà k + 1 chia hết cho 2 do k lẻ 

Nên 6(k + 1) chia hết cho 6.2 = 12

Vậy p + (p + 2) chia hết cho 12

1 tháng 1 2022

bài này tui làm rồi mà quên rồi =)))

1 tháng 1 2022

Answer:

Mình nghĩ đề là  \(p^3+2\) mới đúng chứ nhỉ?

Ta nhận xét được: 

Mọi số nguyên tố lớn hơn 3 thì chia cho 3 đề có dạng: \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\left(k\inℕ^∗\right)\)

\(\orbr{\begin{cases}p=3k+1\Leftrightarrow p^2+2=9k^2+6k+3⋮3\\p=3k+2\Leftrightarrow p^2+2=9k^2-6k+6⋮3\end{cases}}\)

Vì p là số nguyên tố nên \(p\ge2\) khi đó trong cả hai trường hợp thì \(p^2+2>3\) và \(⋮3\)

\(\Rightarrow p^2+2\) là hợp số

\(\Rightarrow p^2+2\) là số nguyên tố khi \(p=3\) (Lúc này \(p^2+2=11\) là số nguyên tố)

\(\Rightarrow p^3+2=27+2=29\) là số nguyên tố

Vậy nếu \(p\) và \(p^2+2\) là số nguyên tố thì \(p^3+2\) cũng là số nguyên tố.

28 tháng 1 2016

ai tik mk, mk tik lại

29 tháng 7 2015

neu p khong chia het cho 3 thi pchia 3 du 1 suy ra p2 +8 chia het cho 3 (trai gia thiet p2 +8 nguyen to)

vay p phai chia het cho 3, ma p nguyen to nen p=3 . suy ra p2 +2=11 la so nguyen to

tuong tu, o cau b ta cung cm duoc p=3

30 tháng 10 2015

P là  số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

Do đó 4p + 1 là hợp số (.)

tick nhé

30 tháng 10 2015

P là  số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

do đó 4p + 1 là hợp số ( đpcm)

28 tháng 7 2016

Gỉa sử a2 và a+b không nguyên tố cùng nhau 

ƯCLN(a2;a+b0=d(d\(\in\)N*,d\(\ne\)1,d nguyên tố) (1)

Nói cách khác: Gọi d là một ước nguyên tố của a2 và a+b

\(\Rightarrow\) a2 chia hết cho d

      a+b chia hết cho d

\(\Rightarrow\) a chia hết cho d

      a+b chia hét cho d

\(\Rightarrow\) a chia hết cho d

      b chia hết cho d

\(\Rightarrow\)d là  ƯC nguyên tố của a và b

\(\Rightarrow\)a và b không nguyên tố cùng nhau(mâu thuãn với đề bài)

Vậy a2 và a+b nguyên tố cùng nhau nếu a và b nguyên tố cùng nhau

28 tháng 7 2016

cảm ơn bạn mai phuong anh

cho mik hỏi 1 cau nữa nhé

23 tháng 10 2016

Giả sử A là 1 số nguyên tố , A = 30 k + r với k,rεN và 0≤r<30.

Nếu r chia hết cho 2, 3 hoặc 5 thì A cũng chia hết cho 2, 3 (hoặc 5) nên A = 2, 3 hoặc 5 ( thỏa mãn)

Nếu r không chia hết cho 2, 3 và 5 :

Giả sử r là hợp số thì r=r1.r2 với r1,r2 > 1.

Vì r không chia hết cho 2, 3 và 5 nên r1,r2 cũng không chia hết cho 2, 3 và 5

=> r1,r2 ≥ 7 => r = r1.r2 ≥ 7.7 = 49 ( vô lý ).

Vậy r không phải là hợp số nên r = 1 hoặc r là số nguyên tố. 

6 tháng 11 2017

Để p và 2p+1 đều nguyên tố > 3 => p và 2p+1 đều ko chia hết cho 3

=> p chia 3 dư 1 hoặc 2 và 2p+1 chia hết cho 3 => p chia 3 dư 2 ; p có dạng 3k+2(k thuộc N)

Khi đó : 4p+1 = 4.(3k+2)+1 = 12k+8+1 = 12k+9 = 3.(4k+3) chia hết cho 3 

Mà 4p+1 > 3 => 4p+1 là hợp số (ĐPCM)