Bài 1: Cho P là số nguyên tố, P > 3 . Hỏi P^2 + 2018 là số nguyên tố hay hợp số?
Bài 2: Cho n là số tự nhiên lớn hơn 3 sao cho n ko chia hết cho 3. CMR n^2 - 1 và n^2 + 1 ko đồng thời là số nguyên tố.
Bài 3: Cho P là số nguyên tố, P > 3 sao cho 8P^2 - 1 là số nguyên tố. CMR 8P^2 + 1 là hợp số.
Bài 4: Cho P là số nguyên tố, P > 3 sao cho P + 2 là số nguyên tố. CMR P + 1 chia hết cho 6.
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)