K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 12 2022

a.

Có \(C_{17}^5\) cách lấy 5 viên bi tùy ý từ 17 viên bi

b.

Lấy 1 bi trắng từ 7 bi trắng, 2 bi xanh từ 4 bi xanh và 2 bi đỏ từ 6 bi đỏ

Số cách lấy là: \(C_7^1.C_4^2.C_6^2\) cách

c.

Các trường hợp thỏa mãn: 1 trắng 1 đỏ 3 xanh, 1 trắng 2 đỏ 2 xanh, 1 trắng 3 đỏ 1 xanh, 2 trắng 1 đỏ 2 xanh, 2 trắng 2 đỏ 1 xanh

Số cách lấy là:

\(C_7^1C_6^1C_4^3+C_7^1C_6^2C_4^2+C_7^1C_6^3C_4^1+C_7^2C_6^1C_4^2+C_7^2C_6^2C_4^1\) cách

Thầy có thể giải thích cụ thể hơn về câu a được không thưa thầy?

NV
20 tháng 4 2023

Có 2 kiểu xếp thỏa mãn là: Đỏ-Đen-Đỏ-Đen-Đỏ-Đen-Đỏ-Đen hoặc Đen-Đỏ-Đen-Đỏ-Đen-Đỏ-Đen-Đỏ

Ở mỗi kiểu xếp, 4 viên bi đỏ có \(4!\) cách xếp và 4 viên bi đen có \(4!\) cách xếp

Do đó có: \(2.4!.4!=1152\) cách xếp thỏa mãn

14 tháng 3 2018

Đáp án D

Có 3 ! 3 ! 4 ! 5 ! = 103680 cách.

12 tháng 2 2019

Đáp án D

Có 3!(3!4!5!) = 103680 cách.

24 tháng 4 2018

Đáp án là C

Số các hoán vị về màu bi khi xếp thành dãy là 3!

Số cách xếp 3 viên bi đen khác nhau thành dãy là 3!

Số cách xếp 4 viên bi đỏ khác nhau thành dãy là 4!

Số cách xếp 5 viên bi xanh khác nhau thành dãy là 5!

Số cách xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau là 3!. 3!. 4!. 5! =  103680 cách.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Việc xếp 9 viên bi sao cho không có hai viên bi trắng nào xếp liến nhau được thực hiện qua 2 công đoạn

Công đoạn 1: Xếp 4 viên bi xanh trước, vì các viên bi có kích thước khác nhau nên quan tâm đến thứ tự, suy ra công đoạn 1 có \(4! = 24\) cách

Công đoạn 2: Xếp 5 viên bi trắng vào 5 vị trí xung quanh bi xanh, có quan tâm đến thứ tự nên công đoạn 2 có \(5! = 120\) cách

Vậy có \(120.24 = 2880\) kết quả thuận lợi cho biến cố “Không có hai viên bi trắng nào xếp liền nhau”

b) Việc xếp 9 viên bi sao cho bốn viên bi xanh được xếp liền nhau được thực hiện qua 2 công đoạn

Công đoạn 1: Xếp 4 viên bi xanh liền nhau, vì các viên bi có kích thước khác nhau nên quan tâm đến thứ tự, suy ra công đoạn 1 có \(4! = 24\) cách

Công đoạn 2: Xếp 5 viên bi trắng có kích thước khác nhau vào bên trái hay bên phải của bi xanh, có quan tâm đến thứ tự nên công đoạn 2 có \(5!{.2^5} = 3840\) cách

Vậy có \(3840.24 = 92160\) kết quả thuận lợi cho biến cố  “Bốn viên bi xanh được xếp liền nhau” 

29 tháng 3 2017

C

Số phn tử của không gian mu chính là số

cách lấy ngu nhiên 6 viên bi bất kì trong 18

viên nên  n Ω = C 18 6

Gọi A là biến cố “6 bi lấy được có đủ ba màu

đồng thời hiệu của số bi đỏ và trắng, hiệu của

số bi xanh và đỏ, hiệu của số bi trắng và xanh

theo thứ tự lập thành cấp số cộng”

Gọi t, d, x ln lượt là số bi trắng,bi đỏ và bi xanh

trong 6 viên bi được chọn ra.

Theo bài ta có:  d − t , x − d , t − x

 lập thành một cấp số cộng.

Do đó:  d − t + t − x = 2 x − d ⇔ d = x .

Lại có t+d+x=6 nên ta có các trường hợp. 

Trường hợp 1. d = x = 1  và t = 4.  Khi đó số cách chọn 6 viên bi là C 6 1 C 7 1 C 5 4 = 210  cách.

Trường hợp 2. t = d = x = 2.  Khi đó số cách chọn 6 viên bi là C 6 2 C 7 2 C 5 2 = 3150  cách.

Vậy số phần tử của biến cố A là   n A = 210 + 3150 = 3360

Do đó xác suất ca biến cố A là P A = n A n Ω = 3360 C 18 6 = 40 221