K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2022

a: Khi \(m=-\sqrt{3}\) thì \(\left(d\right):y=-\sqrt{3}x-2\)

\(\left(d'\right):y=\left(-\sqrt{3}-2\right)x-\sqrt{3}\)

Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}-\sqrt{3}x-2=\left(-\sqrt{3}-2\right)x-\sqrt{3}\\y=-\sqrt{3}\cdot x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(-\sqrt{3}+\sqrt{3}+2\right)x=2-\sqrt{3}\\y=-\sqrt{3}\cdot x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2-\sqrt{3}}{2}\\y=\dfrac{-\sqrt{3}\left(2-\sqrt{3}\right)-4}{2}=\dfrac{-1-2\sqrt{3}}{2}\end{matrix}\right.\)

b: Điểm B có tọa độ là:

\(\left\{{}\begin{matrix}x=0\\y=m\cdot0-2=-2\end{matrix}\right.\)

b: y=(m-2)x+m

=mx-2x+m

=m(x+1)-2x

Điểm C có tọa độ là: x+1=0 và y=-2x

=>x=-1 và y=2

c: Để hai đường vuông góc thì m(m-2)=-1

=>m=1

2 tháng 9 2018

Đáp án C

30 tháng 5 2019

Đáp án B

+ Tọa độ giao điểm của hai đường thẳng d và d’ là nghiệm của hệ phương trình:

suy ra d và d’ cắt nhau tại M( m-1; 3m-1)

+  Vì ba đường thẳng d; d’ ; d’’ đồng quy nên d’’ qua M ta có

3m-1= -m( m-1) + 2 hay m2+ 2m-3=0

Suy ra m=1 hoặc m= -3

Với m= 1 ta có ba đường thẳng là d: y= x+ 2; d’ :  y= 3x+ 2 và d’’: y= -x+ 2  phân biệt và đồng quy tại M(0; 2).

Với m= -3  ta có d và d’’ trùng nhau suy ra m= -3 không thỏa mãn

Vậy m= 1 là giá trị cần tìm.

Chọn B.

Để tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (d) là căn 2, ta sử dụng công thức tính khoảng cách từ một điểm đến một đường thẳng.

Đường thẳng (d) có phương trình y = mx + 2. Khoảng cách từ gốc tọa độ đến đường thẳng (d) được tính bằng công thức:

d = |Ax + By + C| / căn(A^2 + B^2)

Với A, B, C lần lượt là hệ số của x, y và số hạng tự do trong phương trình đường thẳng.

Trong trường hợp này, A = -m, B = 1, C = -2. Và khoảng cách từ gốc tọa độ đến đường thẳng (d) là căn 2.

Vậy ta có phương trình:

|0 - m*0 - 2| / căn((-m)^2 + 1^2) = căn 2

|0 - 2| / căn(m^2 + 1) = căn 2

| - 2| / căn(m^2 + 1) = căn 2

2 / căn(m^2 + 1) = căn 2

Bình phương cả hai vế của phương trình:

4 / (m^2 + 1) = 2

4 = 2(m^2 + 1)

4 = 2m^2 + 2

2m^2 = 2

m^2 = 1

m = ±1

Vậy, để khoảng cách từ gốc tọa độ đến đường thẳng (d) là căn 2, ta có hai giá trị của m: 1 và -1.

30 tháng 11 2023

Phương trình hoành độ giao điểm là:

\(x^2-3x+2=mx+2\)

=>\(x^2-3x+2-mx-2=0\)

=>\(x^2+x\left(-m-3\right)=0\)

\(\Delta=\left(-m-3\right)^2-4\cdot1\cdot1=\left(m+3\right)^2-4=\left(m+3-2\right)\left(m+3+2\right)=\left(m+1\right)\left(m+5\right)\)

Để (P) tiếp xúc với (d) thì Δ=0

=>(m+1)(m+5)=0

=>\(\left[{}\begin{matrix}m+1=0\\m+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-5\end{matrix}\right.\)

Phương trình hoành độ giao điểm là:

\(x^2-mx+1=0\)

\(\text{Δ}=m^2-4\)

Để (P) cắt (d) tại hai điểm phân biệt thì (m-2)(m+2)>0

=>m>2 hoặc m<-2

để hai đường thẳng vuông góc thì \(m^2+2m+1=0\)

hay m=-1

5 tháng 7 2021

Xét pt hoành độ gđ của (P) và (d) có:

\(x^2=mx+m+3\)

\(\Leftrightarrow x^2-mx-m-3=0\)  (I)

Để (d) cắt (P) tại hai điểm pb ở bên phải trục tung

\(\Leftrightarrow\) Pt (I) có hai nghiệm dương 

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m+12>0\left(lđ\right)\\m>0\\-m-3>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< -3\end{matrix}\right.\)\(\Rightarrow m\in\varnothing\)

Vậy...