K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2018

đặt \(\frac{a}{2}=\frac{b}{-3}=\frac{c}{-4,5}=k\)

\(\Rightarrow a=2k,b=-3k,c=-4,5k\)

thay vào biểu thức P ta có:

\(P=\frac{3.2k-2.\left(-3k\right)}{8.2k-\left(-3k\right)+3.\left(-4,5k\right)}=\frac{6k+6k}{7,5k}=\frac{12}{7,5}=\frac{8}{5}\)

16 tháng 11 2018

Đặt \(\frac{a}{2}=\frac{b}{-3}=\frac{c}{-4.5}=k\) suy ra \(a=2k,b=-3k;c=-4,5k\)

Thay vào P ,ta có:  \(P=\frac{3.2k-\left(-3k.2\right)}{8.2k+3k+\left(-4,5k\right)}=\frac{6k+6k}{16k+3k-4,5k}=\frac{12k}{14.5k}=\frac{12}{14.5}=\frac{24}{29}\)

Vậy ...

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

10 tháng 7 2017

Ta có:

\(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+\left(b+c\right)+\left(b+c\right)}\)

\(\le\frac{1}{16}.\left(\frac{1}{a+b}+\frac{1}{c+a}+\frac{2}{b+c}\right)\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{1}{3a+2b+3c}\le\frac{1}{16}.\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{2}{c+a}\right)\left(2\right)\\\frac{1}{3a+3b+2c}\le\frac{1}{16}.\left(\frac{1}{c+a}+\frac{1}{b+c}+\frac{2}{a+b}\right)\left(3\right)\end{cases}}\)

Từ (1), (2), (3) \(\Rightarrow P\le\frac{1}{16}.\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\right)\)

\(=\frac{1}{4}.2017=\frac{2017}{4}\)

đề thi vào lớp 10 năm nay của tỉnh thanh hóa

21 tháng 6 2018

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)\(=\frac{\left(3a-2b\right).5}{5.5}=\frac{\left(2c-5a\right).3}{3.3}=\frac{\left(5b-3c\right).2}{2.2}\) \(=\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{38}=0\) 

\(\Rightarrow\frac{3a-2b}{5}=0\Rightarrow3a-2b=0\Rightarrow3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\) (1)

      \(\frac{2c-5a}{3}=0\Rightarrow2c-5a=0\Rightarrow2c=5a\Rightarrow\frac{c}{5}=\frac{a}{2}\) (2)

Từ (1) và (2) ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)

\(\Rightarrow\frac{a}{2}=-5\Rightarrow a=-10\)

     \(\frac{b}{3}=-5\Rightarrow b=-15\)

      \(\frac{c}{5}=-5\Rightarrow c=-25\)

\(\Rightarrow\)\(a^{b-c}=\left(-10\right)^{\left(-15\right)-\left(-25\right)}=\left(-10\right)^{10}=10^{10}\)

Bài này chỉ cần đưa về dạng thu gọn, ko cần tính ra kết quả cụ thể bạn nhé.

21 tháng 6 2018

Ta có : 

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\Leftrightarrow\)\(\frac{5\left(3a-2b\right)}{5.5}=\frac{3\left(2c-5a\right)}{3.3}=\frac{2\left(5b-3c\right)}{2.2}\)

\(\Leftrightarrow\)\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{38}=0\)

Do đó : 

\(\frac{3a-2b}{5}=0\)\(\Rightarrow\)\(3a-2b=0\)\(\Rightarrow\)\(3a=2b\)\(\Rightarrow\)\(\frac{a}{2}=\frac{b}{3}\) \(\left(1\right)\)

\(\frac{2c-5a}{3}=0\)\(\Rightarrow\)\(2c-5a=0\)\(\Rightarrow\)\(2c=5a\)\(\Rightarrow\)\(\frac{c}{5}=\frac{a}{2}\) \(\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)

Do đó : 

\(\frac{a}{2}=-5\)\(\Rightarrow\)\(a=\left(-5\right).2=-10\)

\(\frac{b}{3}=-5\)\(\Rightarrow\)\(b=\left(-5\right).3=-15\)

\(\frac{c}{5}=-5\)\(\Rightarrow\)\(c=\left(-5\right).5=-25\)

Suy ra : 

\(a^{b-c}=\left(-10\right)^{-15-25}=\left(-10\right)^{-40}=10^{-40}\)

Vậy \(a^{b-c}=10^{-40}\)

Chúc bạn học tốt ~ 

2 tháng 7 2020

Bìa này muốn làm cân 2 bước nha 

Bước 1 ) CM BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

nó được CM như sau

áp dụng BĐT cô si ta đc 

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3.\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9.\sqrt[3]{xyz.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9\)

dấu = xảy ra khi x=y=z

2 tháng 7 2020

Bước 2 ) Theo CM bước 1 . áp dụng ta đc

\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}=\frac{ab}{9}.\frac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}.\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

CM tương tự ta đc

\(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{2c}\right)\)

\(\frac{ca}{c+3a+2b}\le\frac{ca}{9}\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{2a}\right)\)

cộng zế zới zế ta đc

\(A\le\frac{1}{9}\left(\frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b}+\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)\)

\(A\le\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}=\frac{6}{6}=1\)

=> MAx A=1 khi a=b=c=2